一阶线性微分方程 解法

啥是微分方程?普通方程我知道,就是x,y的关系式,比如y=2x,这算是一个方程。

微分方程就是,这个等式里不止有x,y两个元,还会有诸如\frac{dy}{dx}{y}'' 等存在。

例如 \frac{dy}{dx}+y=0

那微分方程求解的目标是什么呢?我们最后要求出什么呢?

目标:我们需要求出y与x的关系式。

比如上面的\frac{dy}{dx}+y=0,我们想要求在这个等式下,y与x的关系式是什么?

所以,咋求?两眼抓瞎。

我们需要提一嘴,在求微分方程的过程中,e^{kx}是我们求解微分方程的好帮手。

e^{kx}  的好处在于,它的导数等于ke^{kx} ,k倍的本身。

一阶线性微分方程

即形如{y}'+\alpha y=q(x),左边是关于y的关系式,右边关于x的关系式不为

齐次微分方程

齐次微分方程是一个微分方程,如果它的一个解乘以任意常数后,仍是它的解,则称为齐次微分方程。

例如,\frac{dy}{dx}+y=0这个就是一个一阶齐次方程。为啥这么说呢,它的解乘以任意常数后,任然是它的解吗?是这样吗?

那我们先来求它的解试试看吧。

\frac{dy}{dx}=-y y的导数等于-1倍的本身,是不是有点眼熟

e^{kx}  的好处在于,它的导数等于ke^{kx} ,k倍的本身。

所以k=-1 

y=e^{-x} 这就是对的了吗?这就是完整的关系式了吗?

非也

y=Ae^{-x} A为任意实数,都满足这个微分方程。不信?那验证一下好啦

{y}'+y=A*-1*e^{-x}+Ae^{-x}=0

它的一个解乘以任意常数后,仍是它的解。

所以叫 \frac{dy}{dx}-ky=0 这种形式的,为一阶齐次方程。

其实很好理解,因为右侧是0,0乘以任何数还是0,y乘以任何常数,它的导数也乘以任何常数,

后就被约掉了,跟没乘一样,哈哈。

一阶线性非齐次微分方程

 那一阶非齐次方程怎么解才行呢?

\frac{dy}{dx}-ky=p(x) 即右边不为0,而是一个x的表达式。

如果右边等于0,那好解,就是咱上面已经解出来过的,问题是右边还带x的表达式,这就不是齐次方程了。

我们重新观察一下,“y的导数”和“y本身常数次倍”的和,这我们好像在哪里见过

{(ay)}'=a{y}'+{a}'y

a=e^{-kx}

我们将 \frac{dy}{dx}-ky=p(x) 两边都乘以 e^{-kx}

即得到

e^{-kx}*\frac{dy}{dx}+(-k)*e^{-kx}*y=p(x)*e^{-kx}

这样看不明白的话,将 \frac{dy}{dx} 换为 {y}'

e^{-kx}*{y}'+(-k)*e^{-kx}*y=p(x)*e^{-kx}

{(e^{-kx}y)}'=p(x)e^{-kx}

(e^{-kx}y)=\int p(x)e^{-kx} dx

y=e^{kx}\int p(x)e^{-kx} dx

问题就变成,求x表达式的积分了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rgbhi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值