前言
❝
一句话概括,别再抱怨Llama“基因”不行了,这篇论文证明了只要“后天培养”得当,给它开个小灶进行“中度训练”,学渣也能逆天改命,和Qwen肩并肩。
*第一阶段:识别核心概念*
*论文的Motivation分析*
这篇论文的出发点非常明确和实际。在当前的大语言模型(LLM)领域,研究者们发现了一个令人困惑的现象:当我们想通过强化学习(RL)来教模型进行复杂的推理(比如做数学题)时,不同的“基座模型”表现出了天壤之别。
具体来说,像Qwen系列的模型,似乎天生就是“强化学习的好苗子”(论文中称为“RL-friendly”),用RL方法稍加训练,推理能力就能突飞猛进。然而,另一个非常流行和强大的模型家族——Llama系列,却像个“固执的学生”,用同样的RL方法去教,效果却差强人意,甚至会出现性能倒退、输出重复无意义内容等“病态”行为。
这就引出了一个根本性的问题:究竟是什么决定了一个基座模型是否适合进行强化学习的“深造”?
如果我们搞不清楚这个问题,那么训练强大的推理模型就变成了一种“玄学”,只能靠运气去挑选基座模型。这篇论文的作者们不信玄学,他们希望通过科学的、可控的实验,揭开这个“黑匣子”,找到连接模型预训练阶段和强化学习效果之间的桥梁,并最终提出一套方法,能把像Llama这样“不听话”的学生,也培养成推理高手。
*论文主要贡献点分析*
-
主要创新点
-
- 系统性地探索了“中度训练”(Mid-training)对强化学习效果的影响。 作者们首次通过一系列严格的对照实验,分析了数学语料质量、问答(QA)数据格式、指令数据、训练预算等多个因素,是如何塑造一个模型对后续强化学习的适应性的。
- 提出了一种创新的两阶段中度训练策略:“稳定-然后-衰减”(Stable-then-Decay)。 这是他们根据实验洞察总结出的一套“培养方案”,旨在将任何基座模型(尤其是Llama)改造得更适合强化学习。
- 推出了一个名为“OctoThinker”的新模型家族。 这不是一个全新的模型架构,而是将Llama模型通过他们提出的“稳定-然后-衰减”策略进行“再教育”后得到的一系列模型。这个家族的特点是“多分支”,像章鱼(Octopus)一样有多个“触手”,每个分支对应一种不同的推理行为。
- 构建并开源了一个大规模、高质量的数学推理语料库:MegaMath-Web-Pro-Max。 这个超过700亿token的语料库为他们的中度训练提供了“养料”,也为整个社区的研究提供了宝贵的资源。
-
关键技术或方法
-
- 稳定阶段(Stable Stage): 使用海量、高质量的通用语料,以一个恒定的学习率进行长时间训练,旨在打造一个坚实、广博的知识基础。
- 衰减阶段(Decay Stage): 在稳定模型的基础上,引入更多样、更专门的推理数据(如长/短思维链),并使用一个衰减的学习率进行短时间微调,旨在让模型快速适应特定的推理模式。
-
- 严格的对照实验设计: 这是支撑其第一个贡献的核心。他们像科学家做实验一样,每次只改变一个变量(例如,换一种数学数据集),来观察对最终RL结果的影响。
- “稳定-然后-衰减”训练框架: 这是论文提出的核心方法。其关键在于两个阶段的不同设置:
- 诊断式评估方法: 作者不仅看最终的准确率,还密切关注RL训练过程中模型回答的平均长度。这个指标非常巧妙,帮助他们诊断出Llama的失败模式(例如,无限重复导致的长度爆炸),从而找到了稳定训练的方法。
-
显著性结果
-
- 最显著的结果是概念上的突破:论文证明了模型的“强化学习友好性”并非一成不变的“天赋”,而是可以通过后天的、有针对性的“中度训练”来塑造和提升的。
- 在实践上,他们成功地弥合了Llama和Qwen在RL推理任务上的性能鸿沟。经过OctoThinker策略改造后的Llama模型,在进行RL训练后,其性能曲线几乎与以RL友好著称的Qwen模型重合(见论文图1和图14),这是一个非常强有力的证明。
- 他们为社区提供了一套将Llama模型变得更擅长推理的**“公开配方”**,这对于广大使用Llama生态的研究者和开发者来说意义重大。
*理解难点识别*
-
理解论文的关键概念/方法
-
- 中度训练(Mid-training): 这是贯穿全文的核心概念。它到底是什么?它和预训练(Pre-training)、微调(Post-training)有什么区别?
- 强化学习友好性(RL-friendliness): 这是一个比较抽象的性质。我们该如何具体理解一个模型是否“友好”?
- “稳定-然后-衰减”(Stable-then-Decay)策略: 这是论文的技术核心。为什么要分为两个阶段?为什么学习率要先“恒定”后“衰减”?这背后的直觉是什么?
-
最具挑战性的部分最具挑战性的部分,是理解 “稳定-然后-衰减”策略的内在逻辑。它不是一个复杂的数学公式,而是一个训练流程的设计哲学。理解为什么这个流程设计能够解决Llama在RL中的“水土不服”问题,是掌握这篇论文精髓的关键。它融合了数据、学习率、训练阶段划分等多个维度的考量。
-
需要重点解释的核心概念毫无疑问,“稳定-然后-衰减”(Stable-then-Decay)策略 是我们最需要深入解释的核心概念。因为它既是论文所有实验探索的最终结晶,也是其核心贡献OctoThinker模型的“诞生配方”。
*概念依赖关系*
- 核心概念之间的关系这些核心概念之间存在清晰的逻辑链条:
- 首先,存在一个问题:Llama模型缺乏**“强化学习友好性”**。
- 为了解决这个问题,作者提出**“中度训练”**是关键的干预手段。
- 通过一系列探索性实验,作者研究了什么样的**“中度训练”**是有效的。
- 最终,他们将所有成功的经验总结提炼,形成了**“稳定-然后-衰减”**这一套最佳实践方案。
- 应用这个方案于Llama模型,便得到了最终的产物——OctoThinker模型家族。
-
解释的最佳切入点我们的解释将以**“稳定-然后-衰减”策略**作为切入点和核心,因为它完美地串联起了论文的“问题”、“探索”和“解决方案”。
*第二阶段:深入解释核心概念*
*设计生活化比喻:培养一名顶尖专科医生*
为了理解“稳定-然后-衰减”策略的精妙之处,让我们先从一个大家都很熟悉的生活场景开始。
想象一下,我们的目标是培养一名世界顶尖的专科医生,比如心脏外科专家。我们手头有一个非常聪明的“好苗子”——一位刚从顶尖高中毕业的学生。这个学生就是我们的 原始Llama模型,潜力巨大,但缺乏系统的专业知识和技能。
直接把他扔进手术室,让他通过“试错”(类似强化学习)来学习做手术,结果可想而知——他会手足无措,不断犯错,甚至造成灾难性后果。这就像直接对原始Llama模型进行RL训练一样,效果很差。
那么,一个科学的培养流程是怎样的呢?这恰好对应了论文的“稳定-然后-衰减”策略。
-
第一阶段:医学院通识教育(对应“稳定阶段” Stable Stage)
-
- 任务:在正式进入专科领域前,这名学生必须在医学院里接受为期数年的通识教育。他需要学习生物、化学、解剖学、药理学等所有基础医学知识。
- 学习材料:海量的、权威的医学教科书和文献(对应论文中的 高质量数学语料MegaMath-Web-Pro-Max)。内容非常广博,打下坚实的基础。
- 学习方式:采用一个稳定、持续的学习节奏(对应 恒定学习率 Constant Learning Rate)。他不会在第一年就只盯着心脏病学猛学,而是系统地、全面地吸收知识。这确保了他的知识体系没有短板,基础非常扎实,不会因为过早专攻某一个方向而导致知识结构畸形。
经过这个阶段,我们得到了一位知识渊博的医学院毕业生,也就是论文中的 OctoThinker-Base-Stable 模型。他虽然还不是专家,但已经具备了成为专家的所有先决条件。
-
第二阶段:专科住院医师培训(对应“衰减阶段” Decay Stage)
-
- 刚进入科室时,他面对全新的专业领域,学习曲线非常陡峭,每天都在飞速进步(学习率高)。
- 随着经验的积累,他逐渐成为科室骨干,学习的重点从掌握新技能转变为对已有技能的精细打磨和优化,进步的速度会放缓,但技艺会更加炉火纯青(学习率降低)。
-
- 任务:医学院毕业后,他选择了一个专科方向(比如心脏外科)进入医院进行住院医师培训。这个阶段的目标是让他从一个通才快速成长为一名专家。
- 学习材料:接触大量真实的、复杂的、高度专业的病例(对应论文中的 专门化的QA和思维链(CoT)数据)。这些病例都是关于心脏外科的,非常聚焦。
- 学习方式:采用一种**“先快后慢”的精进式学习节奏**(对应 衰减学习率 Decaying Learning Rate)。
这个阶段结束后,我们就得到了一位训练有素的心脏外科专家,也就是论文中 OctoThinker的一个分支模型(例如 OctoThinker-Long-Base
)。
-
**培养出不同类型的专家(对应“OctoThinker”的多分支)**在衰减阶段,我们可以根据不同的“专业病例”(不同的数据组合),从同一个医学院毕业生(同一个Stable模型)培养出不同类型的专家:
-
- 外科医生 (Long-CoT Branch): 学习需要长篇、复杂规划和操作的病例,擅长处理复杂手术。
- 诊断专家 (Short-CoT Branch): 学习需要快速、精准判断的病例,擅长快速诊断。
- 全科医生 (Hybrid Branch): 学习综合性病例,能力全面均衡。
这就是OctoThinker(章鱼思想家)名字的由来——一个稳固的“身体”(Stable模型),伸出多个灵活且专业的“触手”(不同的Decay分支)。
*建立比喻与实际技术的对应关系*
比喻中的元素 | 实际技术概念 | 对应关系解释 |
---|---|---|
高中毕业生 | 原始Llama模型 | 拥有通用能力和巨大潜力,但缺乏特定领域的深度知识。 |
医学院通识教育 | 稳定阶段 (Stable Stage) | 一个漫长的、打基础的阶段,旨在建立广博而坚实的知识体系。 |
医学教科书 | 高质量通用语料 (MegaMath-Web-Pro-Max) | 提供全面、准确、高质量的“知识养料”。 |
稳定的学习节奏 | 恒定学习率 (Constant LR) | 确保模型稳步、全面地吸收知识,避免在基础不牢时“过早专业化”。 |
住院医师培训 | 衰减阶段 (Decay Stage) | 一个短暂的、聚焦的专业化阶段,旨在快速塑造模型在特定任务上的行为。 |
专科病例/手术案例 | 专门化的推理数据 (CoT, QA数据) | 提供针对性的训练材料,让模型学习特定的“解题套路”和“思维模式”。 |
“先快后慢”的精进 | 衰减学习率 (Decaying LR) | 允许模型在接触新领域时进行大步调整,然后随着适应程度加深,进行更精细的微调。 |
心脏外科/诊断科医生 | OctoThinker的不同分支 (Long/Short) | 从同一个强大基础模型出发,通过不同的专业化训练,得到具备不同推理风格的模型。 |
最终的行医/手术 | 最终的强化学习(RL)和评估 | 将经过专业训练的模型投入到真实挑战中,检验其学习成果。 |
*深入技术细节*
这个策略本身没有复杂的数学公式,其核心在于流程和配置。
-
稳定阶段 (Stable Stage) 的实现
-
- 数据:将 MegaMath-Web-Pro-Max (占72.5%)、DCLM-Baseline (10%) 等高质量网页和代码数据混合(见论文Table 2)。这个数据配比的特点是通用性强、专业性弱。
- 模型:从原始的Llama模型开始。
- 训练:进行长达 2000亿(200B)tokens 的训练。
- 学习率:使用 恒定学习率 (例如,对于3B模型是2e-5)。这意味着在整个200B tokens的训练过程中,模型的更新步伐始终如一。
- 产出:
OctoThinker-Base-Stable
模型。
-
衰减阶段 (Decay Stage) 的实现
-
- 数据:数据配比发生巨大变化。专业性强的QA和CoT数据 占比大幅提升(例如,QA数据占比达到30%)。根据QA数据的特性(如思维链长短),分为不同的数据混合方案(见论文Table 5)。
- 模型:从
OctoThinker-Base-Stable
模型开始。 - 训练:只进行 200亿(20B)tokens 的训练,这是一个相对较短的过程。
- 学习率:使用 余弦衰减学习率 (Cosine Decay LR)。学习率会从一个较高的初始值(如2e-5)平滑地下降到一个很低的值(如2e-6)。
- 产出:
OctoThinker-Long-Base
、OctoThinker-Short-Base
等多个分支模型。
*将技术细节与比喻相互映射*
-
为什么先稳定后衰减?
-
- 比喻解释:先让学生在医学院打好坚实的基础,再让他去专科深造,这是最科学的培养路径。基础不牢,直接上专科,很容易学成“半吊子”。
- 技术解释:长时间的稳定阶段训练,让模型在巨大的通用语料上充分学习,建立了强大的泛化和基础知识能力。如果直接用专业数据和衰减学习率进行训练,模型可能会对少量专业数据产生“过拟合”,学到一些表面模式,而丧失了通用能力,导致在后续的RL中表现脆弱。
-
为什么学习率先恒定后衰减?
-
- 比喻解释:医学院的稳定学习节奏保证了知识的全面吸收。住院医师的“先快后慢”学习节奏,则符合从新手到专家的认知规律,效率最高。
- 技术解释:恒定学习率在稳定阶段防止了模型过早地在某些数据上“收敛”,保持了学习的“活力”和“可塑性”。而衰减学习率在衰减阶段,让模型可以快速地适应新的专业数据分布(学习率高时),然后在分布适应后,精细地打磨和优化其生成的细节(学习率低时),最终稳定在一个高质量的状态。
-
比喻的局限性: 这个比喻非常贴切,但也有细微差别。例如,人类医生的学习过程更为复杂,受到情感、疲劳等多种因素影响,而模型的训练过程则是由超参数严格控制的数学优化过程。但这并不影响我们通过这个比喻来理解其核心设计哲学。
*总结*
- 核心联系重申:“稳定-然后-衰减”策略就像是培养一名顶尖专科医生。稳定阶段是医学院的通识教育,用恒定学习率在海量通用数据上打下坚实基础;衰减阶段是住院医师的专科培训,用衰减学习率在少量专业数据上快速塑造专家技能。
- 关键数学原理总结:虽然没有新公式,但这个策略是对**学习率调度(Learning Rate Scheduling)和课程学习(Curriculum Learning)**思想的精妙运用。它本质上设计了一个从“通用”到“专门”,从“探索”到“精调”的课程,并通过匹配不同阶段的学习率策略,最大化了训练的效率和效果。
*第三阶段:详细说明流程步骤*
-
起始点我们拥有一个原始的、未经任何修改的基座模型,例如
Llama-3.2-3B-Base
。 -
第一步:准备“教科书”——数据策展 (Data Curation) 输入:海量的、混杂的网页数据,例如从Common Crawl中筛选出的与数学相关的部分(MegaMath-Web)。处理:
-
- 初步筛选与分类:首先,训练一个高效的文本分类器(如fastText),对海量文档进行快速筛选,判断其是否与数学相关。
- 质量打分与精炼:然后,使用一个非常强大的指令微调模型(如Llama-3.1-70B-Instruct)作为“资深编辑”。这个“编辑”会阅读筛选出的文档,并根据其教学价值(从1到5分)进行打分。分数高的(分)被认为是高质量的“正样本”。
- 格式化与清洗:对高质量文档进行深度处理,包括去除广告、多余的HTML标签、统一格式等,最终形成干净、信息密集的
MegaMath-Web-Pro-Max
语料库。 - 准备其他教材:同时,准备好其他类型的数据,如代码数据、专门的短思维链QA数据(MegaMath-QA)、长思维链QA数据(OpenR1-Math-220K)以及通用指令数据(TULU3等)。输出:一系列分门别类、随时可用的数据集,构成了我们整个培养计划的“教材库”。
-
第二步:医学院通识教育——稳定阶段 (Stable Stage) 中度训练这是打基础的关键一步,目标是提升模型的通用知识水平和基础推理能力。输入:模型为
Llama-3.2-3B-Base
。数据为按照Table 2的配比混合的数据流。这个数据流以MegaMath-Web-Pro-Max
(72.5%)为主,辅以少量代码、QA等数据。处理: -
- 启动一个大规模的训练任务。
- 设置训练总步长,对应消耗 2000亿 (200B) tokens 的数据量。
- 关键设置:将学习率设置为一个固定的值(例如 2e-5),在整个训练过程中保持不变。输出:一个经过长期、稳定学习,基础知识和能力得到显著增强的模型,我们称之为
OctoThinker-3B-Base-Stable
。这个模型是下一阶段所有专业化训练的共同起点。
-
第三步:专科医生培训——衰减阶段 (Decay Stage) 中度训练与分支现在,我们从同一个“医学院毕业生” (
Stable
模型)出发,培养不同方向的“专家”。这一步是并行进行的三个独立训练过程。输入:模型为OctoThinker-3B-Base-Stable
(同一个模型检查点被用于三个分支的起点)。数据为三种不同的数据混合方案(来自Table 5),分别侧重长思维链、短思维链和混合模式。处理: -
- 为每个分支启动一个独立的训练任务。
- 设置训练总步长,对应消耗 200亿 (20B) tokens 的数据量。
- 关键设置:将学习率设置为余弦衰减模式。学习率从一个较高的初始值(例如 2e-5)开始,随着训练的进行,平滑地降低到一个非常低的值(例如 2e-6)。输出:三个具有不同“性格”和“专长”的基座模型:
OctoThinker-Long-3B-Base
(擅长长篇推理),OctoThinker-Short-3B-Base
(擅长快速问答),OctoThinker-Hybrid-3B-Base
(能力均衡)。
-
第四步:最终考核——强化学习 (Reinforcement Learning) 阶段这是最后的“临门一脚”,将经过专业训练的模型投入到“实战”中,通过奖励和惩罚进一步激发其推理潜力。输入:从衰减阶段输出的三个模型中任选一个,例如
OctoThinker-Long-3B-Base
。RL环境为使用GRPO算法,在MATH8K
数据集上进行训练。处理: -
- 关键设置1 (Prompt Template): 使用论文中提到的“复杂模板 (Complex Template)”,引导模型产生结构化的思维链。
- 关键设置2 (Progressive Length Scheduler): 采用渐进式最大长度调度器,防止模型在初期就产生过长的、失控的回答。例如,训练的前200步,最大输出长度限制在2048;200-320步,放宽到4096;最后才放宽到8192。
- 模型根据prompt生成回答(rollout),系统根据回答是否正确给予奖励,然后模型根据奖励信号更新自己的参数。这个过程不断循环。输出:最终的、经过强化学习优化的、用于数学推理的专家模型,例如
OctoThinker-Long-3B-Zero
。
*第四阶段:实验设计与验证分析*
*主实验设计解读:核心论点的验证*
-
核心主张:通过“稳定-然后-衰减”中度训练策略,可以将不擅长RL的Llama模型,改造成一个RL友好的模型,其最终推理性能可媲美Qwen。
-
实验设计:作者选取了
Llama-3.2-3B-Base
(起点)、OctoThinker-Long-3B-Base
(终点)和Qwen2.5-3B-Base
(目标),将它们置于完全相同的RL流程下训练,并观察在GSM8K, MATH500, OlympiadBench, AMC23等多个数学基准上的性能曲线。 -
合理性分析:
-
- 数据集与指标:所选数据集均为领域内公认基准,具有挑战性。主要指标准确率直接衡量性能,而辅助指标回答长度则巧妙地揭示了模型的内在行为模式,是非常聪明的诊断工具。
- 基线方法:选择
Llama
和Qwen
作为对比,直接回应了论文开篇的核心问题,使实验结论极具针对性和说服力。
-
实验结论:主实验结果(图1和图14)有力地支撑了核心论点。改造后的Llama(OctoThinker)表现出与Qwen同样强劲的RL性能增长,证明了该策略的有效性。
*消融实验分析:内部组件的贡献*
- 消融1:数学语料的质量 (图5)**消融对象:高质量语料
MegaMath-Web-Pro
vs.Finemath-4plus
。结论:证明了“高质量”是成功的必要条件**,而不仅仅是锦上添花。 - 消融2:QA数据的类型 (图6) 消融对象:不加QA数据 vs. 加入短CoT数据 vs. 加入长CoT数据。结论:揭示了长CoT数据能带来更高性能上限,但也引入了训练不稳定的风险,从而引出了稳定化训练的必要性。
- 消融3:指令数据的加入 (图7, 图8) 消融对象:加入或移除通用的指令数据。结论:证明让模型更好地“听懂指令”是成功进行复杂任务RL的基础,能显著提升训练稳定性和最终性能。
- 消融4:中度训练的预算 (图11) 消融对象:中度训练的数据量(20B vs. 70B vs. 100B tokens)。结论:揭示了中度训练的投入对RL的“潜力”有巨大影响,即使这种“内功”在基座模型评估中不那么明显。
*深度/创新性实验剖析:洞察方法的内在特性*
- 巧妙实验1:训练动态的可视化分析****设计:在所有RL实验中,同时绘制**“准确率 vs. 训练步数”和“回答长度 vs. 训练步数”**两张图。结论:这个双图设计如同一个“CT扫描仪”,清晰地诊断出模型失败的原因(如Llama的“病态重复”),使得作者能够对症下药,提出精准的解决方案。
- 巧妙实验2:长CoT训练的稳定化实验 (图9, 图10) 设计:采用典型的“发现问题 -> 提出假设 -> 实验验证”流程,测试了“复杂模板”和“渐进式长度调度器”两种解决方案。结论:清晰地展示了这两种方法能极大地稳定训练过程,为社区在进行长程推理RL训练时提供了宝贵经验。
- 巧妙实验3:QA数据的来源和比例探索 (图17) 设计:对比了不同来源和不同混合比例的QA数据。结论:揭示了一个更深层的洞见——中度训练的数据分布最好与最终RL任务的分布对齐。同时,找到了30%这个“甜点区”比例,体现了作者严谨求实的科研态度。
最后
为什么要学AI大模型
当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!
DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。
与此同时AI与各行各业深度融合,飞速发展,成为炙手可热的新风口,企业非常需要了解AI、懂AI、会用AI的员工,纷纷开出高薪招聘AI大模型相关岗位。
最近很多程序员朋友都已经学习或者准备学习 AI 大模型,后台也经常会有小伙伴咨询学习路线和学习资料,我特别拜托北京清华大学学士和美国加州理工学院博士学位的鲁为民老师给大家这里给大家准备了一份涵盖了AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料,这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

AI大模型系统学习路线
在面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。
但知道是一回事,做又是另一回事,初学者最常遇到的问题主要是理论知识缺乏、资源和工具的限制、模型理解和调试的复杂性,在这基础上,找到高质量的学习资源,不浪费时间、不走弯路,又是重中之重。
AI大模型入门到实战的视频教程+项目包
看视频学习是一种高效、直观、灵活且富有吸引力的学习方式,可以更直观地展示过程,能有效提升学习兴趣和理解力,是现在获取知识的重要途径
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
海量AI大模型必读的经典书籍(PDF)
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
600+AI大模型报告(实时更新)
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
AI大模型面试真题+答案解析
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
