速度和静力

速度和静力

位置矢量的微分

下面表示某个矢量的微分
B V Q = d d t   B Q = lim ⁡ Δ t → 0 B Q ( t + Δ t ) − B Q ( t ) Δ t (5-1) ^{B}V_Q={\frac{d}{dt}}\ ^{B}Q=\lim_{\Delta{t \to 0}}\frac{^BQ(t+\Delta{t})-^BQ(t)}{\Delta t} \tag{5-1} BVQ=dtd BQ=Δt0limΔtBQ(t+Δt)BQ(t)(5-1)
位置矢量的速度可以看成是用位置矢量描述的空间一点的线速度。重要的是必须说明一个矢量是相对于哪个坐标系求微分。如果在坐标系{A}中表示式(5-1)的速度矢量,可以写为
A ( B V Q ) = A d d t   B Q (5-2) ^A(^BV_Q)=\frac{^Ad}{dt} \ ^BQ \tag{5-2} A(BVQ)=dtAd BQ(5-2)
通常情况下,速度矢量都是与空间的某点相关的,而描述此点速度的大小取决于两个坐标系,一个是进行微分运算的坐标系,另一个是描述这个速度矢量的坐标系。

当两个坐标系相同时,进行参考坐标系变换的矩阵可以清楚表示坐标系间的关系,因此总是省略外部左上标,例如
A ( B V Q ) = B A R B V Q (5-4) ^A(^BV_Q)=^A_BR^BV_Q \tag{5-4} A(BVQ)=BARBVQ(5-4)

角速度矢量

角速度矢量,用 Ω \Omega Ω表示。线速度描述了点的一种属性,角速度描述了刚体的一种属性。

A Ω B ^A\Omega _B AΩB描述了坐标系{B}相对于坐标系{A}的旋转。 C ( A Ω B ) ^C(^A\Omega_B) C(AΩB)就是坐标系{B}相对于坐标系{A}的角速度在坐标系{C}中的描述。若已知参考坐标系非常简单,常常不需要符号表示:
ω C = U Ω C (5-6) \omega _C=^U\Omega _C \tag{5-6} ωC=UΩC(5-6)
ω C \omega _C ωC为坐标系{C}相对于某个已知参考坐标系{U}的角速度。

在这里插入图片描述

刚体的线速度和角速度

线速度

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lbOlxZtv-1600532331671)(image\线速度.png)]

只有线速度(相对方位保持不变)时
A V Q = A V B O R G + B A R B V Q (5-7) ^AV_Q=^AV_{BORG}+^A_BR^BV_Q \tag{5-7} AVQ=AVBORG+BARBVQ(5-7)

角速度

位置矢量 B Q ^BQ BQ固连于{B},{B}相对于{A}旋转 A Ω B ^A\Omega _B AΩB。那么
B V Q = 0 (5-8) ^BV_Q=0 \tag{5-8} BVQ=0(5-8)

∣ Δ Q ∣ = ( ∣ A Q ∣ sin ⁡ θ ) ( ∣ A Ω B ∣ Δ t ) (5-9) |\Delta Q|=(|^AQ|\sin \theta)(|^A\Omega _B|\Delta t) \tag{5-9} ∣ΔQ=(AQsinθ)(AΩB∣Δt)(5-9)

这些矢量满足矢量积
A V Q = A Ω B × A Q ^AV_Q=^A\Omega _B \times ^AQ AVQ=AΩB×AQ
上述是假设位置矢量 B Q ^BQ BQ固连于{B},若 Q Q Q是相对于坐标系{B}变化的,有
A V Q = A ( B V Q ) + A Ω B × A Q (5-11) ^AV_Q=^A(^BV_Q)+^A\Omega _B \times ^AQ \tag{5-11} AVQ=A(BVQ)+AΩB×AQ(5-11)
利用旋转矩阵得
A V Q = B A R B V Q + A Ω B × B A R B Q (5-11) ^A\mathbf V_Q=^A_B\mathbf R^B \mathbf V_Q+^A\mathbf \Omega _B\times ^A_B\mathbf R^B\mathbf Q \tag{5-11} AVQ=BARBVQ+AΩB×BARBQ(5-11)

在这里插入图片描述

线速度和角速度同时存在的情况

考虑原点的速度公式,得到在坐标系{A}中观测坐标系{B}中固定速度矢量的普遍公式:
A V Q = A V B O R G + B A R B V Q + A Ω B × B A R B Q (5-13) ^A\mathbf V_Q=^A\mathbf V_{BORG}+^A_B\mathbf R^B\mathbf V_Q+^A\mathbf \Omega _B\times ^A_B\mathbf R^B\mathbf Q \tag{5-13} AVQ=AVBORG+BARBVQ+AΩB×BARBQ(5-13)

正交矩阵的导数性质

R R T = I n (5-14) \mathbf R \mathbf R^T=\mathbf I_n \tag{5-14} RRT=In(5-14)

R ˙ R T + R R ˙ T = 0 n (5-15) \dot{\mathbf R}\mathbf R^T+\mathbf R\mathbf {\dot{R}}^T=\mathbf 0_n \tag{5-15} R˙RT+RR˙T=0n(5-15)

R ˙ R T + ( R ˙ R T ) T = 0 n (5-16) \dot{\mathbf R}\mathbf R^T+(\dot{\mathbf R}\mathbf R^T)^T=\mathbf 0_n \tag{5-16} R˙RT+(R˙RT)T=0n(5-16)

可以导出
S = R ˙ R − 1 (5-19) \mathbf S=\mathbf {\dot R R}^{-1} \tag{5-19} S=R˙R1(5-19)

由于参考系旋转的点速度

向量 B p ^Bp Bp固连于{B},在{A}中的描述为
A p = B A R   B p (5-20) ^A\mathbf p=^A_B\mathbf R\ ^B\mathbf p \tag{5-20} Ap=BAR Bp(5-20)
如果{B}是旋转的, A p ​ ^Ap​ Ap也是变化的, B p ​ ^Bp​ Bp为常数,那么有
A p ˙ = B A R ˙   B P (5-21) ^A\mathbf{\dot p}=^A_B\mathbf{\dot R} \ ^B\mathbf P \tag{5-21} Ap˙=BAR˙ BP(5-21)
或者用速度符号可以写为
A V p = B A R ˙   B p (5-22) ^A\mathbf V_p=^A_B\mathbf {\dot R}\ ^B\mathbf p \tag{5-22} AVp=BAR˙ Bp(5-22)
代入 B p ^B\mathbf p Bp的表达式得
A V p = B A R ˙ B A R − 1   A p (5-23) ^A \mathbf V_p=^A_B \dot R ^A_B R^{-1}\ ^A\mathbf p \tag{5-23} AVp=BAR˙BAR1 Ap(5-23)
利用正交矩阵(5-19),有
A V p = B A S A p (5-24) ^A\mathbf V_p=^A_B\mathbf S^A\mathbf p \tag{5-24} AVp=BASAp(5-24)

反对称矩阵和矢量积

如果反对称矩阵S的各元素如下
S = [ 0 − Ω x Ω y Ω x 0 − Ω x − Ω y Ω x 0 ] (5-25) \mathbf S=\left [ \begin {matrix} 0 && -\Omega _x && \Omega _y \\ \Omega _x && 0 && -\Omega _x \\ -\Omega _y && \Omega _x &&0 \end{matrix} \right ] \tag{5-25} S= 0ΩxΩyΩx0ΩxΩyΩx0 (5-25)

定义 3 × 1 3\times 1 3×1的列矢量
Ω = [ Ω y Ω x Ω z ] (5-26) \Omega=\left [ \begin{matrix}\Omega _y \\ \Omega _x \\ \Omega _z \end{matrix} \right ] \tag{5-26} Ω= ΩyΩxΩz (5-26)
可以证明
S P = Ω × P SP=\Omega \times P SP=Ω×P
式中,P为任意矢量, × \times ×表示矢量积。
3 × 3 3\times 3 3×3的角速度矩阵相对应 3 × 1 3\times 1 3×1矢量 Ω \Omega Ω称为角速度矢量,与式(5-24)联立可以写为
A V P = A Ω B × A P (5-28) ^AV_P=^A\Omega _B\times ^AP \tag{5-28} AVP=AΩB×AP(5-28)
式中与 Ω \Omega Ω相关的符号表明角速度矢量确定了坐标系{B}县归于坐标系{A}的运动。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Galaxy_Robot

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值