之前讲的都是有关于运动学的相关知识,运动学主要是关节与操作端之间,位置变量的转换关系。本章主要讨论关节与操作端之间,速度变量的转换关系。
1.概述
移动关节会导致操作端的平动,转动关节导致操作端转动+平动,即位置变量:
速度变量:,在这里将操作端角速度矢量记作,那么速度变量的转换关系可以看成是:
1.1 时变位姿的描述
以表示位置矢量,其微分为:
的速度矢量是{B}中的矢量,意义为相对于{B}的移动速率。同样可以转换为其他坐标系下的表示:
上式表示在{A}的表示。
如位置矢量是世界参考坐标系{U}中一个坐标系{C}的原点,对其速度矢量定义一个缩写符号:
在{A}中的表示写为,而当参考系是{U}时,左上角省略符号U。
1.2角速度矢量
线速度矢量描述点的平动属性,角速度矢量描述刚体的旋转属性。由于坐标系总是固连在刚体上描述其位姿,所以角速度矢量描述坐标系的旋转运动。
上图中,描述了坐标系{B}相对于{A}的旋转,的方向是{B}相对{A}旋转的瞬时旋转轴,的大小表示旋转速度。
表示{B}绕{A}旋转的角速度矢量在{C}中的表示。
1.3角速度矢量的简化符号
如角速度矢量描述了坐标系{C}相对于世界参考坐标系{U}的旋转,则左上角的参考系符号可以省略,写成如下的简单形式:
是{C}相对于世界参考坐标系{U}的旋转矢量在{A}中的描述,即,而是{C}相对于坐标系{A}的旋转矢量。
2.刚体的线速度和角速度
本节要讨论刚体的运动速度描述,把坐标系固连在所要描述的刚体上,刚体运动等同于该坐标系相对于另一个参照坐标系的运动。
2.1 线速度与角速度
线速度:
把坐标系{B}固连在刚体上,要求描述刚体上一点Q相对于固定坐标系{A}的平移运动,坐标系{B}相对于{A}的位姿用位置矢量
和旋转矩阵描述,先假设方位不随时间变化,则Q点相对于{A}的运动是由于或随时间变化引起的。
坐标系{A}中Q点的线速度:,上式是两个线速度的合成:{B}系移动线速度+Q点相对于{B}系的平动折到{A}系的线速度。
角速度:
设坐标系{B}和{A}的原点重合,相对于线速度为零的情况。{B}与刚体固连,{A}固定。B}相对于{A}的旋转速度用矢量表示.
已知矢量确定了{B}中一个固定点Q的位置。所以现在的问题是从{A}看,{B}相对{A}的旋转矢量使如何随时间变化。
先假设从{B}看矢量Q是不变的,即
既然Q相对{B}静止,显然从{A}看点Q的速度为旋转角速度,如图为用两个瞬时量表示矢量Q绕的旋转,这是在{A}中