圆/椭圆/双曲线/抛物线等二次曲线的各种情况方程


二次曲线

二次曲线(quadratic curves)由一般的具有两个变量的二次方程所隐含确定,即
在这里插入图片描述
其中,
A = [ a i j ] A=[a_{ij} ] A=[aij]为对称的2x2矩阵
B = [ b i ] 、 [ X = [ x i ] B=[b_{i}]、[X=[x_i] B=[bi][X=[xi]为2x1向量
二次曲线方程的矩阵形式表示为:
在这里插入图片描述
二次曲线方程可以定义点、线、圆、椭圆、抛物线或双曲线。以下讨论二次曲线的各种情况。

A = R T D R , E = R B , Y = R X A=R^T DR,E=RB,Y=RX A=RTDR,E=RB,Y=RX,其中 D D D是对角线矩阵。 R R R A A A的特征向量组成的矩阵。则上式转变换为
在这里插入图片描述

情形1: d 0 ≠ 0 , d 1 ≠ 0 d_0≠0,d_1≠0 d0=0,d1=0

方程因式分解为:
在这里插入图片描述

无解

1) d 0 d 1 > 0 , d 0 r < 0 d_0 d_1>0,d_0 r<0 d0d1>0,d0r<0时,没有实数解;

2) d 0 d 1 > 0 , r = 0 d_0 d_1>0,r=0 d0d1>0,r=0时,解为一个点;

椭圆

3) d 0 d 1 > 0 , d 0 r > 0 d_0 d_1>0,d_0 r>0 d0d1>0,d0r>0,且 d 0 ≠ d 1 d_0≠d_1 d0=d1时,解为一个椭圆;

4) d 0 d 1 > 0 , d 0 r > 0 d_0 d_1>0,d_0 r>0 d0d1>0,d0r>0,且 d 0 = d 1 d_0=d_1 d0=d1时,解为一个圆;

双曲线

5) d 0 d 1 < 0 , r ≠ 0 d_0 d_1<0,r≠0 d0d1<0,r=0时,解为一条双曲线;

两条相交线

6) d 0 d 1 < 0 , r = 0 d_0 d_1<0,r=0 d0d1<0,r=0时,解为两条相交线;
各种情况如图所示:
在这里插入图片描述

情形2: d 0 ≠ 0 , d 1 = 0 d_0≠0,d_1=0 d0=0,d1=0

方程因式分解为:
在这里插入图片描述

无解

1) e 1 = 0 , d 0 r < 0 e_1=0,d_0 r<0 e1=0,d0r<0时,没有实数解。

一条直线

2) e 1 = 0 , r = 0 e_1=0,r=0 e1=0,r=0时,解为一条直线。

两条平行线

3) e 1 = 0 , d 0 r > 0 e_1=0,d_0 r>0 e1=0,d0r>0时,解为两条平行线。

抛物线

4) e 1 ≠ 0 e_1≠0 e1=0时,解为一条抛物线。
各种情况如图所示:
在这里插入图片描述

其他情形:

情形3: d 0 = 0 , d 1 ≠ 0 d_0=0,d_1≠0 d0=0,d1=0 d 0 ≠ 0 , d 1 = 0 d_0≠0,d_1=0 d0=0,d1=0的情形对称一致。

情形4: d 0 = 0 , d 1 = 0 d_0=0,d_1=0 d0=0,d1=0

方程因式分解为:
在这里插入图片描述
1) e 0 = e 1 = 0 , c ≠ 0 e_0=e_1=0,c≠0 e0=e1=0,c=0时,无解;
2) e 0 = e 1 = 0 , c = 0 e_0=e_1=0,c=0 e0=e1=0,c=0时,方程变为 0 = 0 0=0 0=0
3) e 0 ≠ 0 e_0≠0 e0=0 e 1 ≠ 0 e_1≠0 e1=0时,则解为一条直线;

设圆半径为 r r r,中心坐标为 x 0 , y 0 x_0,y_0 x0,y0。圆的参数方程为:
在这里插入图片描述
圆的一般方程为:
在这里插入图片描述

椭圆

设椭圆的长轴为a,短轴为b,中心坐标为 x 0 , y 0 x_0,y_0 x0,y0。则椭圆的标准参数方程为:
在这里插入图片描述
椭圆的标准方程为:
在这里插入图片描述
θ θ θ为长轴的倾角,则椭圆的一般方程为:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值