高等代数8-6 若尔当标准型理论推导

若尔当块的初等因子

  本节研究复矩阵的若尔当标准形.我们先考察若尔当块的行列式因子,不变因子和初等因子.
  对于若尔当块矩阵 J ( λ 0 , t ) , \bm J(\lambda_0, t), J(λ0,t),其特征多项式 ∣ λ E t − J ( λ 0 , t ) ∣ |\lambda\bm E_t - \bm J(\lambda_0, t)| λEtJ(λ0,t).容易得出,其特征多项式 f ( λ ) = ( λ − λ 0 ) t , t f(\lambda) = (\lambda - \lambda_0)^t,t f(λ)=(λλ0)t,t阶行列式因子为 D t ( λ ) = ( λ − λ 0 ) t , D t − 1 ( λ ) = 1. D_t(\lambda ) = (\lambda - \lambda_0)^t,D_{t-1}(\lambda) = 1. Dt(λ)=(λλ0)t,Dt1(λ)=1.从而得出不变因子.由此可见特征矩阵 λ E t − J ( λ 0 , t ) \lambda\bm E_t - \bm J(\lambda_0, t) λEtJ(λ0,t)与下列对角矩阵等价: Δ 0 ( λ ) = ( E t − 1 ( λ − λ 0 ) t ) . \bm \Delta_0(\lambda) = \begin{pmatrix}\bm E_{t-1} & \\ & (\lambda - \lambda_0)^t\end{pmatrix}. Δ0(λ)=(Et1(λλ0)t).  对于若尔当矩阵 J = ( J ( λ 1 , t 1 ) J ( λ 2 , t 2 ) ⋱ J ( λ s , t s ) ) \bm J = \begin{pmatrix}\bm J(\lambda_1, t_1) \\ & \bm J(\lambda_2, t_2) \\ & & \ddots \\ & & & \bm J(\lambda_s, t_s)\end{pmatrix} J=J(λ1,t1)J(λ2,t2)J(λs,ts)其中 λ 1 , ⋯   , λ s \lambda_1, \cdots, \lambda_s λ1,,λs中可能有相同的.我们记 Δ i ( λ ) = ( E t i − 1 ( λ − λ 0 ) t i ) . \bm \Delta_i(\lambda) = \begin{pmatrix}\bm E_{t_i-1} & \\ & (\lambda - \lambda_0)^{t_i}\end{pmatrix}. Δi(λ)=(Eti1(λλ0)ti).那么 λ E − J \lambda \bm E - \bm J λEJ与下列对角矩阵等价: Δ ( λ ) = ( Δ 1 ( λ ) Δ 2 ( λ ) ⋱ Δ s ( λ ) ) \bm \Delta (\lambda)= \begin{pmatrix}\bm \Delta_1 (\lambda) \\ & \bm \Delta_2 (\lambda) \\ & & \ddots \\ & & & \bm \Delta_s (\lambda)\end{pmatrix} Δ(λ)=Δ1(λ)Δ2(λ)Δs(λ)由定理 8 8 8, J \bm J J的初等因子就是 ( λ − λ 1 ) t 1 , ( λ − λ 2 ) t 2 , ⋯   , ( λ − λ s ) t s . (\lambda - \lambda_1)^{t_1}, (\lambda - \lambda_2)^{t_2}, \cdots, (\lambda - \lambda_s)^{t_s}. (λλ1)t1,(λλ2)t2,,(λλs)ts.  反过来,如果已知若尔当矩阵 J \bm J J的初等因子是 ( λ − λ 1 ) t 1 , ( λ − λ 2 ) t 2 , ⋯   , ( λ − λ s ) t s , (\lambda - \lambda_1)^{t_1}, (\lambda - \lambda_2)^{t_2}, \cdots, (\lambda - \lambda_s)^{t_s}, (λλ1)t1,(λλ2)t2,,(λλs)ts,那么 J \bm J J必然是由 s s s个若尔当块 J ( λ i , t i )    ( 1 ≤ i ≤ s ) \bm J(\lambda_i, t_i)\ \ (1 \leq i \leq s) J(λi,ti)  (1is)组成.所以初等因子基本上决定了若尔当矩阵.
  又因为,一个 λ − \lambda- λ矩阵唯一确定了它的初等因子,所以我们有
定理10 每个 n n n阶复矩阵 A \bm A A必然与一个若尔当矩阵相似,并且这个若尔当矩阵中的若尔当块除了排列次序之外是由矩阵 A \bm A A唯一决定的.我们称该若尔当矩阵为 A \bm A A的若尔当标准形.
证明  因为 A \bm A A是复数域上的矩阵,所以它的每个初等因子都是一次因式的方幂,不妨设它的初等因子是 ( λ − λ 1 ) t 1 , ( λ − λ 2 ) t 2 , ⋯   , ( λ − λ s ) t s , (\lambda - \lambda_1)^{t_1}, (\lambda - \lambda_2)^{t_2}, \cdots, (\lambda - \lambda_s)^{t_s}, (λλ1)t1,(λλ2)t2,,(λλs)ts,那么由若尔当标准形的理论就能够推出它的特征矩阵相抵于上述若尔当标准形.

若尔当标准形应用

定理11 对于 n n n维复线性空间 V V V上的任意线性变换 A , \mathscr A, A,总是可以找到 V V V的一组基,使得 A \mathscr A A在这组基下的矩阵是一个若尔当矩阵.这个若尔当矩阵除了若尔当块的次序之外是由线性变换 A \mathscr A A唯一决定的.
定理12 复矩阵与对角矩阵相似的充分必要条件是该矩阵的初等因子均是一次的.
定理13 复矩阵与对角矩阵相似的充分必要条件是该矩阵的不变因子没有重根.再由不变因子之间的整除性质,该定理可以等价地叙述为:复矩阵与对角矩阵相似的充分必要条件是该矩阵的最后一个不变因子没有重根.

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值