第T8周:猫狗识别

>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客**
>- **🍖 原作者:[K同学啊]**


  • 难度:夯实基础⭐⭐
  • 语言:Python3、TensorFlow2

🍺 要求:

  1. 了解model.train_on_batch()并运用
  2. 了解tqdm,并使用tqdm实现可视化进度条

🍻 拔高(可选):

  1. 本文代码中存在一个严重的BUG,请找出它并配以文字说明

🔎 探索(难度有点大)

  1. 修改代码,处理BUG

本次项目放弃了以往的model.fit()训练方法,改用model.train_on_batch方法。两种方法的比较:

  • model.fit():用起来十分简单,对新手非常友好
  • model.train_on_batch():封装程度更低,可以玩更多花样。

此外,引入了进度条的显示方式,更加方便我们及时查看模型训练过程中的情况,可以及时打印各项指标。

🚀我的环境:

  • 语言环境:Python3.11.7
  • 编译器:jupyter notebook
  • 深度学习框架:TensorFlow2.13.0

一、前期工作

1. 设置GPU

如果使用的是CPU可以注释掉这部分的代码。

import tensorflow as tf

gpus=tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0],True)
    tf.config.set_visible_devices([gpus[0]],"GPU")
    
#打印显卡信息,确认GPU可用
print(gpus)

2. 导入数据

import warnings
warnings.filterwarnings('ignore')

import pathlib
data_dir="D:\THE MNIST DATABASE\T8"
data_dir=pathlib.Path(data_dir)

image_count=len(list(data_dir.glob('*/*')))

print("图片总数为:",image_count)

 运行结果:

图片总数为: 3400

二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

加载训练集:

train_ds=tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=12,image_size=(224,224),
    batch_size=8
)

 运行结果:

Found 3400 files belonging to 2 classes.
Using 2720 files for training.

加载验证集:

val_ds=tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=12,
    image_size=(224,224),
    batch_size=8
)

 运行结果:

Found 3400 files belonging to 2 classes.
Using 680 files for validation.

通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names=train_ds.class_names
print(class_names)

 运行结果:

['cat', 'dog']

2. 再次检查数据

for image_batch,labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

运行结果:

(8, 224, 224, 3)
(8,)
  • Image_batch是形状的张量(8, 224, 224, 3)。这是一批形状224x224x3的8张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(8,)的张量,这些标签对应8张图片

3. 配置数据集

  • prefetch() :预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。
  • cache() :将数据集缓存到内存当中,加速运行
AUTOTUNE=tf.data.AUTOTUNE

def preprocess_image(image,label):
    return (image/255.0,label)

#归一化处理
train_ds=train_ds.map(preprocess_image,num_parallel_calls=AUTOTUNE)
val_ds=val_ds.map(preprocess_image,num_parallel_calls=AUTOTUNE)

train_ds=train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds=val_ds.cache().prefetch(buffer_size=AUTOTUNE)

如果报 AttributeError: module 'tensorflow._api.v2.data' has no attribute 'AUTOTUNE' 错误,就将 AUTOTUNE = tf.data.AUTOTUNE 更换为 AUTOTUNE = tf.data.experimental.AUTOTUNE,这个错误是由于版本问题引起的。

4. 可视化数据

import matplotlib.pyplot as plt

plt.figure(figsize=(15,10))

for images,labels in train_ds.take(1):
    for i in range(8):
        
        ax=plt.subplot(5,8,i+1)
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

 运行结果:

三、构建VG-16网络

VGG优缺点分析:

  • VGG优点

VGG的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3x3)和最大池化尺寸(2x2)。

  • VGG缺点

1)训练时间过长,调参难度大。2)需要的存储容量大,不利于部署。例如存储VGG-16权重值文件的大小为500多MB,不利于安装到嵌入式系统中

结构说明:

●13个卷积层(Convolutional Layer),分别用blockX_convX表示
●3个全连接层(Fully connected Layer),分别用fcX与predictions表示
●5个池化层(Pool layer),分别用blockX_pool表示

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

from tensorflow.keras import layers,models,Input
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout

def vgg16(nb_classes,input_shape):
    input_tensor=Input(shape=input_shape)
    #1st block
    x=Conv2D(64,(3,3),activation='relu',padding='same')(input_tensor)
    x=Conv2D(64,(3,3),activation='relu',padding='same')(x)
    x=MaxPooling2D((2,2),strides=(2,2))(x)
    #2nd block
    x=Conv2D(128,(3,3),activation='relu',padding='same')(x)
    x=Conv2D(128,(3,3),activation='relu',padding='same')(x)
    x=MaxPooling2D((2,2),strides=(2,2))(x)
    #3rd block
    x=Conv2D(256,(3,3),activation='relu',padding='same')(x)
    x=Conv2D(256,(3,3),activation='relu',padding='same')(x)
    x=Conv2D(256,(3,3),activation='relu',padding='same')(x)
    x=MaxPooling2D((2,2),strides=(2,2))(x)
    #4th block
    x=Conv2D(512,(3,3),activation='relu',padding='same')(x)
    x=Conv2D(512,(3,3),activation='relu',padding='same')(x)
    x=Conv2D(512,(3,3),activation='relu',padding='same')(x)
    x=MaxPooling2D((2,2),strides=(2,2))(x)
    #5th block
    x=Conv2D(512,(3,3),activation='relu',padding='same')(x)
    x=Conv2D(512,(3,3),activation='relu',padding='same')(x)
    x=Conv2D(512,(3,3),activation='relu',padding='same')(x)
    x=MaxPooling2D((2,2),strides=(2,2))(x)
    #full connection
    x=Flatten()(x)
    x=Dense(1024,activation='relu')(x)
    x=Dense(108,activation='relu')(x)
    output_tensor=Dense(nb_classes,activation='softmax')(x)
    
    model=Model(input_tensor,output_tensor)
    return model

model=vgg16(1000,(224,224,3))
model.summary()

在此,我直接采用轻量化方式,减少了全连接层的参数数量,使模型大小由500MB减少到150MB。

Model: "model_1"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_2 (InputLayer)        [(None, 224, 224, 3)]     0         
                                                                 
 conv2d_13 (Conv2D)          (None, 224, 224, 64)      1792      
                                                                 
 conv2d_14 (Conv2D)          (None, 224, 224, 64)      36928     
                                                                 
 max_pooling2d_5 (MaxPoolin  (None, 112, 112, 64)      0         
 g2D)                                                            
                                                                 
 conv2d_15 (Conv2D)          (None, 112, 112, 128)     73856     
                                                                 
 conv2d_16 (Conv2D)          (None, 112, 112, 128)     147584    
                                                                 
 max_pooling2d_6 (MaxPoolin  (None, 56, 56, 128)       0         
 g2D)                                                            
                                                                 
 conv2d_17 (Conv2D)          (None, 56, 56, 256)       295168    
                                                                 
 conv2d_18 (Conv2D)          (None, 56, 56, 256)       590080    
                                                                 
 conv2d_19 (Conv2D)          (None, 56, 56, 256)       590080    
                                                                 
 max_pooling2d_7 (MaxPoolin  (None, 28, 28, 256)       0         
 g2D)                                                            
                                                                 
 conv2d_20 (Conv2D)          (None, 28, 28, 512)       1180160   
                                                                 
 conv2d_21 (Conv2D)          (None, 28, 28, 512)       2359808   
                                                                 
 conv2d_22 (Conv2D)          (None, 28, 28, 512)       2359808   
                                                                 
 max_pooling2d_8 (MaxPoolin  (None, 14, 14, 512)       0         
 g2D)                                                            
                                                                 
 conv2d_23 (Conv2D)          (None, 14, 14, 512)       2359808   
                                                                 
 conv2d_24 (Conv2D)          (None, 14, 14, 512)       2359808   
                                                                 
 conv2d_25 (Conv2D)          (None, 14, 14, 512)       2359808   
                                                                 
 max_pooling2d_9 (MaxPoolin  (None, 7, 7, 512)         0         
 g2D)                                                            
                                                                 
 flatten_1 (Flatten)         (None, 25088)             0         
                                                                 
 dense_3 (Dense)             (None, 1024)              25691136  
                                                                 
 dense_4 (Dense)             (None, 108)               110700    
                                                                 
 dense_5 (Dense)             (None, 1000)              109000    
                                                                 
=================================================================
Total params: 40625524 (154.97 MB)
Trainable params: 40625524 (154.97 MB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________

四、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer="adam",
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy']
)

五、训练模型

tqdm的原型是通过包裹可迭代对象来显示进度条,提供实时的进度更新和定制化的展示信息

参数:

  1. 基本参数
    • iterable:必须提供的参数,指定要迭代的对象。
    • desc:进度条的描述文字,默认为None,用于在进度条前显示自定义的前缀。
    • total:总的迭代次数,用于计算进度百分比,默认为None。
  2. 输出控制参数
    • leave:控制进度条完成后是否保留,默认为True。
    • file:指定输出进度条信息的文件对象,默认为sys.stderr。
    • ncols:进度条的总宽度,即显示的字符数,默认为None,自动调整宽度。
  3. 进度条外观参数
    • bar_format:自定义进度条的格式,默认为 "{desc}: {percentage:3.0f}%|{bar}| {n_fmt}/{total_fmt}"。
    • unit:进度条的单位名称,默认为"it"。
    • unit_scale:控制是否自动缩放单位,取值为True或False,默认为False。
  4. 动态调整参数
    • dynamic_ncols:控制是否动态调整进度条宽度以适应终端大小,默认为False。
    • smoothing:控制平滑进度条的更新,取值范围0到1,默认为0.3。
  5. 更新频率控制参数
    • mininterval:最小更新间隔时间(秒),默认为0.1。
    • maxinterval:最大更新间隔时间(秒),默认为10。
    • miniters:最小更新次数,用于控制进度条的更新频率,默认为1。
  6. 其他选项参数
    • ascii:控制是否使用ASCII字符显示进度条,默认为False。
    • disable:控制是否禁用进度条,默认为False。

 示例:

import time
from tqdm import tqdm

def action():
    time.sleep(0.5)
with tqdm(total=5000, desc='test', leave=True, ncols=100, unit='B', unit_scale=True) as pbar:
    for i in range(10):
        # sleep 0.5秒
        action()
        # 更新sleep进度
        pbar.update(500)

运行结果:

test: 100%|██████████████████████████████████████████████████████| 5.00k/5.00k [00:05<00:00, 984B/s]

这段代码使用了tqdm库来显示一个进度条。首先导入了timetqdm库,然后定义了一个名为action的函数,该函数会暂停0.5秒。接下来,使用with语句创建一个tqdm对象,设置了总进度为5000,描述为'test',进度条宽度为100个字符,单位为'B',并且启用了单位缩放。在循环中,每次调用action()函数后,使用pbar.update(500)更新进度条。最后,进度条显示了100%完成,总共用时5秒,速度为998字节/秒。 


train_on_batch函数的原型是

train_on_batch(x, y=None,sample_weight=None,class_weight=None,

reset_metrics=True,return_dict=False)

参数:

  1. 输入数据
    • x:这是必须提供的参数,指代模型的输入数据。如果模型只有一个输入,那么x可以是一个numpy数组;如果模型有多个输入,那么x应该是一个numpy数组的列表。当模型的输入被命名时,x还可以是一个字典,将输入名称映射到对应的numpy数组。
  2. 目标数据
    • y:这是可选参数,用于指定模型的目标(标签)数据。对于单输出模型,y是一个numpy数组;对于多输出模型,y是numpy数组的列表。与x类似,如果模型的输出层被命名,y也可以是一个字典,将输出层的名称映射到对应的numpy数组。
  3. 样本权重
    • sample_weight:这是可选参数,用于指定mini-batch中每个样本的权重。该参数接受一个形状为(batch_size)的数组,这些权重会被应用于每个样本的模型损失。在处理时间序列数据的情况下,可以传递一个形状为(samples, sequence_length)的二维数组,以对每个样本的每个时间步应用不同的权重。此时需要在编译模型时指定sample_weight_mode="temporal"
  4. 类别权重
    • class_weight:这是可选参数,用于在损失函数中为不同类别指定不同的权重,特别适用于处理类别不平衡的情况。该参数接受一个字典,将类索引(整数)映射到权重(浮点数),从而在训练期间对来自代表性不足类的样本进行重点关注。
  5. 重置指标
    • reset_metrics:这是可选参数,默认值为True。当设置为True时,返回的度量值仅针对当前的mini-batch。如果设置为False,度量值会在各个批次之间累积。这在需要监控跨批次的度量值时非常有用。
  6. 返回字典
    • return_dict:这是可选参数,默认为False。当设置为False时,train_on_batch返回一个标量或标量列表,具体取决于模型的输出数量和度量数量。如果设置为True,则train_on_batch返回一个字典,其中包含loss和所有度量的名称及其相应的值。这个参数在需要以结构化方式处理多个输出结果时非常有用。

 对于keras中的fit()和train_on_batch()的比较可以参考:

Keras中的fit、fit_generator、train_on_batch的用法介绍


开始模型训练: 

from tqdm import tqdm
import tensorflow.keras.backend as K

epochs=10
lr=1e-4

#记录训练数据,方便后面的分析
history_train_loss=[]
history_train_accuracy=[]
history_val_loss=[]
history_val_accuracy=[]

for epoch in range(epochs):
    train_total=len(train_ds)
    val_total=len(val_ds)
    
    """
    total:预期迭代数目
    ncols:控制进度条宽度
    mininterval:进度更新最小间隔,以秒为单位(默认值:0.1)
    """
    with tqdm(total=train_total,desc=f'Epoch {epoch+1}/{epochs}',mininterval=1,ncols=100) as pbar:
        
        lr=lr*0.92
        K.set_value(model.optimizer.lr,lr)
        
        for image,label in train_ds:
            """
            训练模型,简单理解train_on_batch就是:它是比model.fit()%更高级的一个用法
            """
            history=model.train_on_batch(image,label)
            
            train_loss=history[0]
            train_accuracy=history[1]
            
            pbar.set_postfix({"loss":"%.4f"%train_loss,
                              "accuracy":"%.4f"%train_accuracy,
                              "lr":K.get_value(model.optimizer.lr)})
            pbar.update(1)
        history_train_loss.append(train_loss)
        history_train_accuracy.append(train_accuracy)
        
    print('开始验证!')
    
    with tqdm(total=val_total,desc=f'Epoch {epoch+1}/{epochs}',mininterval=0.3,ncols=100) as pbar:
        
        for image,label in val_ds:
            
            history=model.test_on_batch(image,label)
            
            val_loss=history[0]
            val_accuracy=history[1]
            
            pbar.set_postfix({"loss":"%.4f"%val_loss,
                              "accuracy":"%.4f"%val_accuracy})
            pbar.update(1)
        history_val_loss.append(val_loss)
        history_val_accuracy.append(val_accuracy)
    
    print('结束验证!')
    print("验证loss为:%.4f"%val_loss)
    print("验证准确率为:%.4f"%val_accuracy)

运行结果:

Epoch 1/10: 100%|████████| 340/340 [17:54<00:00,  3.16s/it, loss=0.3833, accuracy=0.8750, lr=9.2e-5]
开始验证!
Epoch 1/10: 100%|█████████████████████| 85/85 [00:49<00:00,  1.72it/s, loss=0.0737, accuracy=1.0000]
结束验证!
验证loss为:0.0737
验证准确率为:1.0000
Epoch 2/10: 100%|███████| 340/340 [17:50<00:00,  3.15s/it, loss=0.1127, accuracy=1.0000, lr=8.46e-5]
开始验证!
Epoch 2/10: 100%|█████████████████████| 85/85 [00:49<00:00,  1.71it/s, loss=0.1149, accuracy=1.0000]
结束验证!
验证loss为:0.1149
验证准确率为:1.0000
Epoch 3/10: 100%|███████| 340/340 [18:05<00:00,  3.19s/it, loss=0.1163, accuracy=0.8750, lr=7.79e-5]
开始验证!
Epoch 3/10: 100%|█████████████████████| 85/85 [00:53<00:00,  1.58it/s, loss=0.2065, accuracy=0.8750]
结束验证!
验证loss为:0.2065
验证准确率为:0.8750
Epoch 4/10: 100%|███████| 340/340 [19:12<00:00,  3.39s/it, loss=0.0564, accuracy=1.0000, lr=7.16e-5]
开始验证!
Epoch 4/10: 100%|█████████████████████| 85/85 [00:49<00:00,  1.70it/s, loss=0.0003, accuracy=1.0000]
结束验证!
验证loss为:0.0003
验证准确率为:1.0000
Epoch 5/10: 100%|███████| 340/340 [18:26<00:00,  3.26s/it, loss=0.3317, accuracy=0.8750, lr=6.59e-5]
开始验证!
Epoch 5/10: 100%|█████████████████████| 85/85 [00:49<00:00,  1.72it/s, loss=0.0819, accuracy=1.0000]
结束验证!
验证loss为:0.0819
验证准确率为:1.0000
Epoch 6/10: 100%|███████| 340/340 [18:46<00:00,  3.31s/it, loss=0.0013, accuracy=1.0000, lr=6.06e-5]
开始验证!
Epoch 6/10: 100%|█████████████████████| 85/85 [00:50<00:00,  1.69it/s, loss=0.0273, accuracy=1.0000]
结束验证!
验证loss为:0.0273
验证准确率为:1.0000
Epoch 7/10: 100%|███████| 340/340 [18:44<00:00,  3.31s/it, loss=0.6714, accuracy=0.8750, lr=5.58e-5]
开始验证!
Epoch 7/10: 100%|█████████████████████| 85/85 [00:50<00:00,  1.68it/s, loss=0.0260, accuracy=1.0000]
结束验证!
验证loss为:0.0260
验证准确率为:1.0000
Epoch 8/10: 100%|███████| 340/340 [18:30<00:00,  3.27s/it, loss=0.0013, accuracy=1.0000, lr=5.13e-5]
开始验证!
Epoch 8/10: 100%|█████████████████████| 85/85 [00:56<00:00,  1.51it/s, loss=0.1152, accuracy=0.8750]
结束验证!
验证loss为:0.1152
验证准确率为:0.8750
Epoch 9/10: 100%|███████| 340/340 [18:34<00:00,  3.28s/it, loss=0.0113, accuracy=1.0000, lr=4.72e-5]
开始验证!
Epoch 9/10: 100%|█████████████████████| 85/85 [00:48<00:00,  1.77it/s, loss=0.0047, accuracy=1.0000]
结束验证!
验证loss为:0.0047
验证准确率为:1.0000
Epoch 10/10: 100%|██████| 340/340 [18:10<00:00,  3.21s/it, loss=0.0000, accuracy=1.0000, lr=4.34e-5]
开始验证!
Epoch 10/10: 100%|████████████████████| 85/85 [00:48<00:00,  1.77it/s, loss=0.0035, accuracy=1.0000]
结束验证!
验证loss为:0.0035
验证准确率为:1.0000

六、模型评估

epochs_range = range(epochs)

plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, history_train_accuracy, label='Training Accuracy')
plt.plot(epochs_range, history_val_accuracy, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, history_train_loss, label='Training Loss')
plt.plot(epochs_range, history_val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

运行结果: 

七、预测

import numpy as np

#采用加载的模型来看预测结果
plt.figure(figsize=(18,3)) #图形的宽为18高为3
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False  #用来正常显示负号

for images,labels in val_ds.take(1):
    for i in range(8):
        ax=plt.subplot(1,8,i+1)
        
        #显示图片
        plt.imshow(images[i].numpy())
        
        #需要给图片增加一个维度
        img_array=tf.expand_dims(images[i],0)
        
        #使用模型预测图片中的人物
        predictions=model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])
        
        plt.axis("off")

运行结果:

八、心得体会

本次项目使用了train_on_batch()函数,使用过程中学习了其包含的各种参数及其使用方法。但模型结果并不理想,产生的问题留待下一周进行解决。

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值