Inception V3 可视化

Inception v3模型在一台配有 8 Tesla K40 GPUs,大概价值$30,000的野兽级计算机上训练了几个星期,因此不可能在一台普通的PC上训练。因此,我们将会下载预训练好的Inception模型,然后用它来做图像分类。

Inception v3模型大约有2500万个参数,分类一张图像就用了50亿的乘加指令。在一台没有GPU的现代PC上,分类一张图像转眼就能完成。

我们可以通过python下载inception pretrain模型,下载完成后需要解压到指定目录,然后利用Tensorboard实现IInception V3可视化。

下载并解压代码如下:

 
# coding=utf-8
import tensorflow as tf
import os
import tarfile
import requests

inception_pretrain_model_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'

# 下载inception pretrain模型
inception_pretrain_model_dir = "inception_pretrain"
if not os.path.exists(inception_pretrain_model_dir):
	os.makedirs(inception_pretrain_model_dir)

filename = inception_pretrain_model_url.split('/')[-1]
filepath = os.path.join(inception_pretrain_model_dir, filename)

if not os.path.exists(filepath):
	print("开始下载: ", filename)
	r = requests.get(inception_pretrain_model_url, stream=True)
	with open(filepath, 'wb') as f:
		for chunk in r.iter_content(chunk_size=1024):
			if chunk:
				f.write(chunk)

print("下载完成, 开始解压: ", filename)
tarfile.open(filepath, 'r:gz').extractall(inception_pretrain_model_dir)

下载完成后,我们接下来利用tensorboard可视化工具来看看效果。

以classify_image_graph_def.pb为例,这是google训练好的模型,先加载inception graph,再写到本地log file。

代码如下:

 
# TensorBoard log目录
log_dir = 'inception_log'
if not os.path.exists(log_dir):
	os.makedirs(log_dir)

inception_pretrain_model_dir = "inception_pretrain"
if not os.path.exists(inception_pretrain_model_dir):
    os.makedirs(inception_pretrain_model_dir)

# 加载inception graph
# classify_image_graph_def.pb为google训练好的模型
inception_graph_def_file = os.path.join(inception_pretrain_model_dir, 'classify_image_graph_def.pb')
with tf.Session() as sess:
    with tf.gfile.FastGFile(inception_graph_def_file, 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        tf.import_graph_def(graph_def, name='')
    writer = tf.summary.FileWriter(log_dir, sess.graph)
    writer.close()


至此,在本地文件夹log_dir(当前为inception_log)目录下就生成了一个文件,该文件可以利用以下命令可视化。

Inception V3 可视化

生成的文件

tensorboard --logdir=inception_log

最终我们可以看到其结构如下:

Inception V3 可视化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值