Inception v3模型在一台配有 8 Tesla K40 GPUs,大概价值$30,000的野兽级计算机上训练了几个星期,因此不可能在一台普通的PC上训练。因此,我们将会下载预训练好的Inception模型,然后用它来做图像分类。
Inception v3模型大约有2500万个参数,分类一张图像就用了50亿的乘加指令。在一台没有GPU的现代PC上,分类一张图像转眼就能完成。
我们可以通过python下载inception pretrain模型,下载完成后需要解压到指定目录,然后利用Tensorboard实现IInception V3可视化。
下载并解压代码如下:
# coding=utf-8
import tensorflow as tf
import os
import tarfile
import requests
inception_pretrain_model_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
# 下载inception pretrain模型
inception_pretrain_model_dir = "inception_pretrain"
if not os.path.exists(inception_pretrain_model_dir):
os.makedirs(inception_pretrain_model_dir)
filename = inception_pretrain_model_url.split('/')[-1]
filepath = os.path.join(inception_pretrain_model_dir, filename)
if not os.path.exists(filepath):
print("开始下载: ", filename)
r = requests.get(inception_pretrain_model_url, stream=True)
with open(filepath, 'wb') as f:
for chunk in r.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
print("下载完成, 开始解压: ", filename)
tarfile.open(filepath, 'r:gz').extractall(inception_pretrain_model_dir)
下载完成后,我们接下来利用tensorboard可视化工具来看看效果。
以classify_image_graph_def.pb为例,这是google训练好的模型,先加载inception graph,再写到本地log file。
代码如下:
# TensorBoard log目录
log_dir = 'inception_log'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
inception_pretrain_model_dir = "inception_pretrain"
if not os.path.exists(inception_pretrain_model_dir):
os.makedirs(inception_pretrain_model_dir)
# 加载inception graph
# classify_image_graph_def.pb为google训练好的模型
inception_graph_def_file = os.path.join(inception_pretrain_model_dir, 'classify_image_graph_def.pb')
with tf.Session() as sess:
with tf.gfile.FastGFile(inception_graph_def_file, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
writer = tf.summary.FileWriter(log_dir, sess.graph)
writer.close()
至此,在本地文件夹log_dir(当前为inception_log)目录下就生成了一个文件,该文件可以利用以下命令可视化。
生成的文件
tensorboard --logdir=inception_log
最终我们可以看到其结构如下: