在数学建模竞赛中,时间序列模型是用于分析按照时间顺序排列的数据点的一类统计模型。这些模型尤其在经济学、金融、环境科学、工程学和自然科学等领域中非常有用,因为它们能够分析、预测未来数据点的趋势、季节性等特性。
时间序列模型的种类繁多,其中最基本的有自回归(AR)模型、移动平均(MA)模型、自回归移动平均(ARMA)模型和自回归积分滑动平均(ARIMA)模型。更高级的模型如季节性ARIMA(SARIMA)和向量自回归(VAR)模型也经常在竞赛中使用。
自回归移动平均(ARMA)模型
ARMA模型结合了自回归(AR)模型和移动平均(MA)模型的特点。AR部分反映了过去值对当前值的影响,而MA部分则考虑了过去的预测误差对当前预测的影响。ARMA模型通常用于分析平稳时间序列数据。
模型公式
ARMA模型可以表示为:
[ X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \sum_{j=1}^{q} \theta_j \epsilon_{t-j} + \epsilon_t ]
其中,(X_t) 是时间序列中的当前值,(c) 是常数项,(p) 是自回归项的阶数