Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 4045 Solved: 1929
[Submit][Status][Discuss]
Description
鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的。根据这个特点阿Q编写了一个打鼹鼠的游戏:在一个n*n的网格中,在某些时刻鼹鼠会在某一个网格探出头来透透气。你可以控制一个机器人来打鼹鼠,如果i时刻鼹鼠在某个网格中出现,而机器人也处于同一网格的话,那么这个鼹鼠就会被机器人打死。而机器人每一时刻只能够移动一格或停留在原地不动。机器人的移动是指从当前所处的网格移向相邻的网格,即从坐标为(i,j)的网格移向(i-1, j),(i+1, j),(i,j-1),(i,j+1)四个网格,机器人不能走出整个n*n的网格。游戏开始时,你可以自由选定机器人的初始位置。现在你知道在一段时间内,鼹鼠出现的时间和地点,希望你编写一个程序使机器人在这一段时间内打死尽可能多的鼹鼠。
Input
第一行为n(n<=1000), m(m<=10000),其中m表示在这一段时间内出现的鼹鼠的个数,接下来的m行每行有三个数据time,x,y表示有一只鼹鼠在游戏开始后time个时刻,在第x行第y个网格里出现了一只鼹鼠。Time按递增的顺序给出。注意同一时刻可能出现多只鼹鼠,但同一时刻同一地点只可能出现一只鼹鼠。
Output
仅包含一个正整数,表示被打死鼹鼠的最大数目
Sample Input
2 2
1 1 1
2 2 2
Sample Output
1
HINT
连边后可以看成DAG上的最长路,当然不用真的建图。
线性dp即可,类似LIS,不过只能n方转移,m*m的复杂度不知道为什么能过
写代码要注意常数,差距挺大的。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#define max(u,v) (u<v?v:u)
inline int rd(){
int ret=0,f=1;char c;
while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
while(isdigit(c))ret=ret*10+c-'0',c=getchar();
return ret*f;
}
const int MAXN=10005;
int f[MAXN];
int n,m;
int t[MAXN],x[MAXN],y[MAXN];
int main(){
int ans=-1;
n=rd();m=rd();
for(int i=1;i<=m;i++){
f[i]=1;
t[i]=rd(),x[i]=rd(),y[i]=rd();
for(int j=1;j<=i-1;j++){
if(abs(x[i]-x[j])+abs(y[i]-y[j])<=t[i]-t[j]) f[i]=max(f[i],f[j]+1);
}
ans=max(ans,f[i]);
}
printf("%d",ans);
return 0;
}