【Research】Model Stealing

What is Model Stealing?

在这里插入图片描述
Extract an approximation that of the target model that “closely matches” the original
Accuracy?
Fidelity?
Funtional equivalence?

Threat Models

在这里插入图片描述

API Access

Model extraction using:
Prediction Vectors
Labels Only

Model Access

Obfuscate the use of the model by:
Fine-tuning
Distillation

Data Access

Use the private dataset by:
Training a new model from scratch
Distilling the target mode(requires API access as well)

My Model was Stolen:So What?

Why

Machine learning models may require a very large amount of resource to create:
Research and Development
Creating Private Datasets
Compute Costs

Model Cost
GPT2 $256/hour
XLNET $245,000
GPT3 $4.6 Million

Having your model stolen can create new vulnerabilities for it:
Data privacy issues through model-inversion/membership inference(模型反演/成员推理)
在这里插入图片描述
Enables the use of white-box(白盒) adversarial example(对抗样本) creation
在这里插入图片描述
If a model extraction attack(模型提取攻击) is successful, the victim loses the information asymmetry advantage that is integral in defences for several other kinds of attacks.

Outline

First Paper: Black-box techniques for extracting a model using a query API(使用查询API提取模型的黑盒技术)
Second Paper: Detect model extraction by characterizing behaviour specific to the victim model(通过对受害者模型特有的行为特征进行检测模型提取)
Third Paper: Detecting model extraction by characterizing behaviour specific to the victim’s training set(通过对受害者训练集的特定行为进行特征化来检测模型的提取)

Stealing Machine Learning Models via Prediction APIs

Tramèr et al., 2016 paper link

Contributions

  1. Show the effectiveness of simple equation solving extraction attacks.
  2. Novel algorithm for extracting decision trees from non-boolean features.
  3. Demonstrate that extraction attacks still work against models that output only class labels.
  4. Application of these methods to real MLaaS interfaces.

Threat Model & Terminology

Focus on proper model extraction(模型提取)
Attacker has “black-box” access
This includes any info and statistics provided by the ML API
在这里插入图片描述

Equation Solving Attacks

方程求解攻击
在这里插入图片描述What about more complicated models?
The paper shows that these attacks can extend to all model classes with a “logistic” layer
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Is this attack feasible on DNN given the number of queries?
Are “random” inputs good enough to learn an accurate model for inputs with high dimensional feature space?

在这里插入图片描述
Case study: Amazon Web Services
Feature extraction takes extra reverse engineering which means more queries!<

  • 25
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
工作窃取线程池是一种并行计算框架,它旨在提高多线程任务执行的效率。在传统线程池中,任务通常被划分为多个小任务,由线程池中的线程进行处理。然而,当某些线程已完成其任务,而其他线程仍在处理较大的任务时,就会出现工作不均衡的情况。这种情况下,工作窃取线程池就能发挥作用。 工作窃取线程池的核心思想是将任务分成更小的任务,并将它们放入一个双端队列中,该队列由每个线程私有地维护。每个线程在执行完自己的任务后,会从队列的尾部窃取一个任务进行执行。这样,当某个线程空闲时,它可以从其他线程的队列中窃取任务来执行,以达到任务的平衡分配,提高整体的计算性能。 工作窃取线程池的好处是充分利用线程的空闲时间,减少了线程之间的竞争,提高了线程的利用率,从而提高了整个系统的并发性能。 然而,工作窃取线程池也存在一些问题。首先,任务划分成更小的任务会带来额外的开销,如任务分解和合并的开销。其次,不同线程之间的任务执行顺序可能会受到影响,这可能导致一些任务的执行时间较长。 总的来说,工作窃取线程池是一种优化多线程计算性能的有效方式,它通过平衡任务的分配和提高线程的利用率来提高整体的并发性能。但在使用时,需要考虑任务划分的开销和任务执行顺序的一致性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bosenya12

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值