论文
PAMI 2022 - Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo , 徐青山,孔维航,陶文兵*,Marc Pollefeys
关键总结
- ACMMP本质上是一种优化,它需要Colmap的结果(dense)作为输入;
- ACMMP可以被视为是在有了点云后对其进行更稠密计算的优化算法,200张图片的运算速度,在dense基础上,10多分钟出结果;
- ACMMP是之前研究的ACMH、ACMM、ACMP算法和框架的堆叠;
- ACMH是ACMMP的基础,ACMH是构成ACMMP算法的单元;
- ACMH是对PatchMatch和Gipuma的发扬和继承;
- Gipuma改进了PatchMatch的传播策略(大改);
- ACMH在Gipuma的基础上进一步改进了传播策略(小改);
- 同时,ACMH弥补了Gipuma中视图选择策略的缺陷。
- ACMM是以ACMH作为处理单元、同时对数据进行了上、下采样的算法框架;
- ACMM为了解决弱纹理区域重建精度的问题,对图片数据进行了下采样;
- ACMP是为了解决ACMH和ACMM算法中参数过多的问题,引入先验平面和概率图模型;
- ACMMP是在ACMP的基础上引入了ACMM中多尺度几何一致的思想。
时间有限,未完待续。。。