3D Gaussian Splatting:论文原理分析

研究人员提出了一种新的实时渲染技术3DGaussianSplatting,能在较短训练时间内提供与Mip-NeRF360相当甚至更好的视觉质量。方法通过摄像机校准、优化算法和感知渲染,实现了快速且高质量的场景表示和合成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标题:3D Gaussian Splatting for Real-Time Radiance Field Rendering

作者:Bernhard Kerbl、Georgios Kopanas、Thomas Leimkühler和George Drettakis,来自法国Inria、Université Côte d'Azur和德国Max-Planck-Institut für Informatik。

发表时间:2023年8月,ACM Transactions on Graphics上,卷号42,编号4

 摘要

提出了一种名为3D Gaussian Splatting的新方法,用于实时辐射场渲染,这种方法可以在只需要很少的优化时间的同时,实现与之前方法相当甚至更好的视觉质量。

本文提出的3D Gaussian场景表示方法,结合了实时可微分渲染器,显著提高了场景优化和新视角合成的速度。

实验表明,在与InstantNGP(Müller et al., 2022)相同的训练时间下,该方法可以达到相似的视觉质量,甚至在某些情况下超过了Mip-NeRF360(Barron et al., 2022)。

此外,本文还提出了三个关键元素以实现最新的实时、高质量辐射场渲染:

  • 首先,采用了一个点云派生的摄像机校准,通过连续的体积路径追踪来优化场景的3D Gaussian表示;
  • 其次,设计了一种稳定的感知优化/密度控制算法来控制3D Gaussians,明显改善了渲染的优化和一致性;
  • 最后,开发了一种灵活的感知渲染算法,支持动态视点和场景元素变化,可以实现良好的实时渲染质量和实时渲染速度。

关键词

新型视觉合成、辐射场、3D Gaussians、实时渲染

引言

引言部分首先指出,尽管使用如NeRF方法能够在几个小时内达到视觉上令人满意的结果,但是在达到最佳视觉质量方面,例如使用Mip-NeRF360方法,通常需要更长的优化时间。而本文提出的3D Gaussian Splatting方法在较短的训练时间内就能够实现快速但较低质量的辐射场方法,且在实时渲染性能方面有所提升。

本文强调了3D Gaussian作为一种灵活而表现力丰富的场景表示方法,并指出通过结构化光动作(Structured Motion, SM)校准的相机与Structure-from-Motion生成的点云相结合,可以作为场景表示的一部分。本文提出的实时渲染方法使用最新的GPU来提升3D Gaussian的优化和新视角合成速度。该方法的关键元素包括:

  • 引入各向异性3D Gaussian作为高质量、紧凑、无结构和精确的场景表示方法。
  • 一个优化3D Gaussian属性的方法,例如形状、光度和方向,通过连续的体积路径追踪来优化它们的表示,并且可以适应GPU。
  • 一个快速、可见性感知的传播算法,允许各向异性的splatting和快速反向传播,以及通过跟踪场景遍历来实现排序和遮挡处理。

Related Work

  1. 传统场景重建与渲染:早期的新视角合成算法基于光场和结构光扫描,通过捕获照片集合来合成新视角图像。随后提到了体积渲染和基于模型的连续体积路径追踪等技术,并指出这些技术在过去几年中有了显著的改进。

  2. 神经渲染与辐射场:这部

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值