书生浦语第二期第六节课作业

环境搭建

在创建开发机界面选择镜像为 Cuda12.2-conda,并选择 GPU 为30% A100

在开始配置环境前,我们先创建一个用于存放 Agent 相关文件的目录,可以执行如下命令:

mkdir -p /root/agent

配置conda环境

studio-conda -t agent -o pytorch-2.1.2

安装Lagent和AgentLego

cd /root/agent
conda activate agent
git clone https://gitee.com/internlm/lagent.git
cd lagent && git checkout 581d9fb && pip install -e . && cd ..
git clone https://gitee.com/internlm/agentlego.git
cd agentlego && git checkout 7769e0d && pip install -e . && cd ..

安装其他依赖

conda activate agent
pip install lmdeploy==0.3.0
cd /root/agent
git clone -b camp2 https://gitee.com/internlm/Tutorial.git

基础作业--Lagent Web Demo 使用

         Lagent 的 Web Demo 需要用到 LMDeploy 所启动的 api_server,我们在terminal上输入以下代码:

conda activate agent
lmdeploy serve api_server /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b \
                            --server-name 127.0.0.1 \
                            --model-name internlm2-chat-7b \
                            --cache-max-entry-count 0.1

        再在VSCode新建一个terminal,输入以下代码启动Lagent Web Demo:

conda activate agent
cd /root/agent/lagent/examples
streamlit run internlm2_agent_web_demo.py --server.address 127.0.0.1 --server.port 7860

        打开自己电脑的windows powershell,输入以下代码构建ssh链接,你的端口号在开发机的ssh链接能看到

ssh -CNg -L 7860:127.0.0.1:7860 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的 ssh 端口号

        接下来在本地的浏览器页面中打开 http://localhost:7860 以使用 Lagent Web Demo。首先输入模型 IP 为 127.0.0.1:23333,在输入完成后按下回车键以确认。并选择插件为 ArxivSearch,以让模型获得在 arxiv 上搜索论文的能力。

        我输入了“请帮我搜索 InternLM2 Technical Report”让其帮我搜索书生浦语2的技术报告。

基础作业--AgentLego 直接使用部分

   首先先下载demo图片:

cd /root/agent
wget http://download.openmmlab.com/agentlego/road.jpg

    安装环境依赖:

conda activate agent
pip install openmim==0.3.9
mim install mmdet==3.3.0

   在terminal输入,创建一个python文件:

touch /root/agent/direct_use.py

  在此python文件下输入以下代码:

import re

import cv2
from agentlego.apis import load_tool

# load tool
tool = load_tool('ObjectDetection', device='cuda')

# apply tool
visualization = tool('/root/agent/road.jpg')
print(visualization)

# visualize
image = cv2.imread('/root/agent/road.jpg')

preds = visualization.split('\n')
pattern = r'(\w+) \((\d+), (\d+), (\d+), (\d+)\), score (\d+)'

for pred in preds:
    name, x1, y1, x2, y2, score = re.match(pattern, pred).groups()
    x1, y1, x2, y2, score = int(x1), int(y1), int(x2), int(y2), int(score)
    cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 1)
    cv2.putText(image, f'{name} {score}', (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 1)

cv2.imwrite('/root/agent/road_detection_direct.jpg', image)

  terminal输入以下代码:

python /root/agent/direct_use.py

  可得到如下结果 

 进阶作业-- AgentLego WebUI 使用

我们首先需要修改 /root/agent/agentlego/webui/modules/agents/lagent_agent.py 文件的第 105行位置,将 internlm2-chat-20b 修改为 internlm2-chat-7b

然后在terminal使用Lmdeploy进行部署

conda activate agent
lmdeploy serve api_server /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b \
                            --server-name 127.0.0.1 \
                            --model-name internlm2-chat-7b \
                            --cache-max-entry-count 0.1

在VSCode上新建一个terminal启动AgentLego,输入以下代码:

conda activate agent
cd /root/agent/agentlego/webui
python one_click.py

打开windows powershell,输入以下代码建立ssh链接:

ssh -CNg -L 7860:127.0.0.1:7860 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的 ssh 端口号

接下来在本地的浏览器页面中打开 http://localhost:7860 以使用 AgentLego WebUI。首先先配置Agent 。

注意:第二步第一次配置是选择New Agent,我这是已经配置好了。

第四步是输入 http://127.0.0.1:23333

然后是要配置Tools

 注意:第二步第一次配置是选择New Tools,我这是已经配置好了。

配置好后,点击左上角的Chat按钮,滑到最下面,选中ObjectionDetection,然后就可以输入本地图片让Agent帮你检测物体了。

进阶作业--使用 Lagent 或 AgentLego 实现自定义工具并完成调用

1.使用Lagent完成工具调用

  (1)输入以下代码创建python文件

touch /root/agent/lagent/lagent/actions/weather.py

 (2)在文件内输入以下代码,以新建工具文件

import json
import os
import requests
from typing import Optional, Type

from lagent.actions.base_action import BaseAction, tool_api
from lagent.actions.parser import BaseParser, JsonParser
from lagent.schema import ActionReturn, ActionStatusCode

class WeatherQuery(BaseAction):
    """Weather plugin for querying weather information."""
    
    def __init__(self,
                 key: Optional[str] = None,
                 description: Optional[dict] = None,
                 parser: Type[BaseParser] = JsonParser,
                 enable: bool = True) -> None:
        super().__init__(description, parser, enable)
        key = os.environ.get('WEATHER_API_KEY', key)
        if key is None:
            raise ValueError(
                'Please set Weather API key either in the environment '
                'as WEATHER_API_KEY or pass it as `key`')
        self.key = key
        self.location_query_url = 'https://geoapi.qweather.com/v2/city/lookup'
        self.weather_query_url = 'https://devapi.qweather.com/v7/weather/now'

    @tool_api
    def run(self, query: str) -> ActionReturn:
        """一个天气查询API。可以根据城市名查询天气信息。
        
        Args:
            query (:class:`str`): The city name to query.
        """
        tool_return = ActionReturn(type=self.name)
        status_code, response = self._search(query)
        if status_code == -1:
            tool_return.errmsg = response
            tool_return.state = ActionStatusCode.HTTP_ERROR
        elif status_code == 200:
            parsed_res = self._parse_results(response)
            tool_return.result = [dict(type='text', content=str(parsed_res))]
            tool_return.state = ActionStatusCode.SUCCESS
        else:
            tool_return.errmsg = str(status_code)
            tool_return.state = ActionStatusCode.API_ERROR
        return tool_return
    
    def _parse_results(self, results: dict) -> str:
        """Parse the weather results from QWeather API.
        
        Args:
            results (dict): The weather content from QWeather API
                in json format.
        
        Returns:
            str: The parsed weather results.
        """
        now = results['now']
        data = [
            f'数据观测时间: {now["obsTime"]}',
            f'温度: {now["temp"]}°C',
            f'体感温度: {now["feelsLike"]}°C',
            f'天气: {now["text"]}',
            f'风向: {now["windDir"]},角度为 {now["wind360"]}°',
            f'风力等级: {now["windScale"]},风速为 {now["windSpeed"]} km/h',
            f'相对湿度: {now["humidity"]}',
            f'当前小时累计降水量: {now["precip"]} mm',
            f'大气压强: {now["pressure"]} 百帕',
            f'能见度: {now["vis"]} km',
        ]
        return '\n'.join(data)

    def _search(self, query: str):
        # get city_code
        try:
            city_code_response = requests.get(
                self.location_query_url,
                params={'key': self.key, 'location': query}
            )
        except Exception as e:
            return -1, str(e)
        if city_code_response.status_code != 200:
            return city_code_response.status_code, city_code_response.json()
        city_code_response = city_code_response.json()
        if len(city_code_response['location']) == 0:
            return -1, '未查询到城市'
        city_code = city_code_response['location'][0]['id']
        # get weather
        try:
            weather_response = requests.get(
                self.weather_query_url,
                params={'key': self.key, 'location': city_code}
            )
        except Exception as e:
            return -1, str(e)
        return weather_response.status_code, weather_response.json()

(3)为了获得稳定的天气查询服务,我们首先要获取 API KEY。首先打开 开发文档 | 和风天气开发服务 后,点击右上角控制台。(如下图所示)

和风天气控制台

进入控制台后,点击左侧项目管理,然后点击右上角创建项目以创建新项目。(如下图所示)

创建项目

输入相关项目名称,选择免费订阅,Web API 以及输入 key 的名称。(项目名称和 key 的名词自由输入即可,如下图所示)

创建项目

接下来回到项目管理页面,查看我们刚刚创建的 key,并且复制好以供2.3节中使用。(如下图所示)

查看 key

(4)之前的terminal端口先全部终止,可以按Ctrl+C或Ctrl+Z来关闭,然后在terminal输入:

conda activate agent
lmdeploy serve api_server /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b \
                            --server-name 127.0.0.1 \
                            --model-name internlm2-chat-7b \
                            --cache-max-entry-count 0.1

 (5)去VSCode上新建一个terminal输入以下代码:

注意!!export那填入上面复制的Key

export WEATHER_API_KEY=在2.2节获取的API KEY
# 比如 export WEATHER_API_KEY=1234567890abcdef
conda activate agent
cd /root/agent/Tutorial/agent
streamlit run internlm2_weather_web_demo.py --server.address 127.0.0.1 --server.port 7860

(6)在本地windows powershell输入以下指令建立ssh链接:

ssh -CNg -L 7860:127.0.0.1:7860 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的 ssh 端口号

(7)然后就可以跟Agent聊天了,Agent能调用天气API端口工具给我们一个满意的答复~ 

2.使用AgentLego完成工具调用

AgentLego 在这方面提供了较为详尽的文档,文档地址为 自定义工具 — AgentLego 0.2.0 文档 。自定义工具主要分为以下几步:

  1. 继承 BaseTool 类
  2. 修改 default_desc 属性(工具功能描述)
  3. 如有需要,重载 setup 方法(重型模块延迟加载)
  4. 重载 apply 方法(工具功能实现)

其中第一二四步是必须的步骤。下面我们将实现一个调用 MagicMaker 的 API 以实现图像生成的工具。

MagicMaker 是汇聚了优秀 AI 算法成果的免费 AI 视觉素材生成与创作平台。主要提供图像生成、图像编辑和视频生成三大核心功能,全面满足用户在各种应用场景下的视觉素材创作需求。体验更多功能可以访问 Magic Maker 。

(1)在terminal输入以下代码新建一个python文件

touch /root/agent/agentlego/agentlego/tools/magicmaker_image_generation.py

(2)在上面的python文件输入以下代码创建工具调用 

import json
import requests

import numpy as np

from agentlego.types import Annotated, ImageIO, Info
from agentlego.utils import require
from .base import BaseTool


class MagicMakerImageGeneration(BaseTool):

    default_desc = ('This tool can call the api of magicmaker to '
                    'generate an image according to the given keywords.')

    styles_option = [
        'dongman',  # 动漫
        'guofeng',  # 国风
        'xieshi',   # 写实
        'youhua',   # 油画
        'manghe',   # 盲盒
    ]
    aspect_ratio_options = [
        '16:9', '4:3', '3:2', '1:1',
        '2:3', '3:4', '9:16'
    ]

    @require('opencv-python')
    def __init__(self,
                 style='guofeng',
                 aspect_ratio='4:3'):
        super().__init__()
        if style in self.styles_option:
            self.style = style
        else:
            raise ValueError(f'The style must be one of {self.styles_option}')
        
        if aspect_ratio in self.aspect_ratio_options:
            self.aspect_ratio = aspect_ratio
        else:
            raise ValueError(f'The aspect ratio must be one of {aspect_ratio}')

    def apply(self,
              keywords: Annotated[str,
                                  Info('A series of Chinese keywords separated by comma.')]
        ) -> ImageIO:
        import cv2
        response = requests.post(
            url='https://magicmaker.openxlab.org.cn/gw/edit-anything/api/v1/bff/sd/generate',
            data=json.dumps({
                "official": True,
                "prompt": keywords,
                "style": self.style,
                "poseT": False,
                "aspectRatio": self.aspect_ratio
            }),
            headers={'content-type': 'application/json'}
        )
        image_url = response.json()['data']['imgUrl']
        image_response = requests.get(image_url)
        image = cv2.cvtColor(cv2.imdecode(np.frombuffer(image_response.content, np.uint8), cv2.IMREAD_COLOR),cv2.COLOR_BGR2RGB)
        return ImageIO(image)

(3)关闭掉之前的terminal的网页链接,在terminal上输入命令:

conda activate agent
lmdeploy serve api_server /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b \
                            --server-name 127.0.0.1 \
                            --model-name internlm2-chat-7b \
                            --cache-max-entry-count 0.1

(4)VSCode新建一个terminal,输入以下命令:

conda activate agent
cd /root/agent/agentlego/webui
python one_click.py

(5)在windows powershell输入以下命令:

ssh -CNg -L 7860:127.0.0.1:7860 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的 ssh 端口号

 (6)新增一个Tools,流程跟之前一样

 (7)回到Chat页面,选择MagicMakerImageGeneration

 (8)然后就可以跟Agent聊天啦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值