Matlab 颜色、线型、标记符号和希腊字母表

参考:
Matlab画图常用的线条符号、颜色:https://blog.csdn.net/sinat_21026543/article/details/80215281
利用matlab构建自己的colormap(色彩搭配):https://blog.csdn.net/weixin_42943114/article/details/81811556

1、颜色、线型、标记符号

颜色符号标记符号
b 蓝色. 点
g 绿色s 方块
r 红色o 圆圈
c 青色x 叉号
m 品红+ 加号
y 黄色* 星号
k 黑色d 菱形
w 白色v 朝下三角
线形符号^ 朝上三角
- 实线< 朝左三角
: 虚线> 朝右三角
-. 点划线p 五角星
– 双划线h 六角星

2、希腊字母表

常用的希腊字母的LaTex 格式如下表所示:

标识符符号 标识符符号标识符符号
\alpha α \alpha α\epsilon ϵ \epsilon ϵ\infty ∞ \infty
\beta β \beta β\eta η \eta η\int ∫ \int
\gamma γ \gamma γ\Gamma Γ \Gamma Γ \partial ∂ \partial
\delta δ \delta δ\Delta Δ \Delta Δ\leftarrow ← \leftarrow
\theta θ \theta θ\Theta Θ \Theta Θ\rightarrow → \rightarrow
\lambda λ \lambda λ \Lambda Λ \Lambda Λ\downarrow ↓ \downarrow
\xi ξ \xi ξ\Xi Ξ \Xi Ξ\uparrow ↑ \uparrow
\pi π \pi π\Pi Π \Pi Π\div ÷ \div ÷
\omega ω \omega ω\Omega Ω \Omega Ω\times × \times ×
\sigma σ \sigma σ\Sigma Σ \Sigma Σ\pm ± \pm ±
\phi ϕ \phi ϕ\Phi Φ \Phi Φ\leq ≤ \leq
\psi ψ \psi ψ\Psi Ψ \Psi Ψ\geq ≥ \geq
\rho ρ \rho ρ\tau τ \tau τ\neq ≠ \neq =
\nu ν \nu ν\chi χ \chi χ\exists ∃ \exists
\mu μ \mu μ\zeta ζ \zeta ζ\forall ∀ \forall

3、颜色深究

Matlab用来表示颜色有两种方式,一种就是上面提到的以字母表示颜色,另外一种方式便是以[r g b]一个一行三列的矩阵来表示颜色,rgb的取值都是0~1,0代表最暗,1代表最亮。换句话说,[0 0 0]表示黑色,[1 1 1]表示白色。
常用的几种颜色及其rgb值如下表所示:

颜色r g b
黑色0 0 0
白色1 1 1
红色1 0 0
绿色0 1 0
蓝色0 0 1
黄色1 1 0
洋红1 0 1
青蓝0 1 1
天蓝0.67 0 1
橘黄1 0 0.5
深红0.5 0 0

如果自己构造颜色矩阵的话,未免有些麻烦,幸好Matlab自带了一些标准调色板函数,如下所示:
在这里插入图片描述
如果想快速产生rgb矩阵的话,可以按照下面的例子构造:

c=colorcube(32);  %生成的是一个32*3的矩阵
c(i,:);           %提取一个颜色
colorbar('horiz');%横向colorbar

利用rgb矩阵或者颜色字母画图,应该都是可行的:

>> plot(x,y1,'color',c(1,:));
>> plot(x,y1,'color','r');
>> plot(x,y1,'.r');

值得注意的一点是,利用字母颜色,可省'color',如上面第三行所示。

### Matlab 中 Meijer-G 函数文档与使用实例 #### 文档说明 MATLAB 提供了对特殊函数的支持,其中包括 Meijer-G 函数。此函数用于表示复杂的数学表达式,在处理含有奇点的积分以及特定类型的微分方程时非常有用[^1]。 为了访问 MATLAB 的官方文档并了解 `meijerG` 函数的具体语法参数定义,可以输入命令: ```matlab doc meijerG ``` 这将打开帮助浏览器窗口,其中包含了详细的描述、输入输出参数解释以及其他相关信息。 #### 使用示例 下面给出几个简单的例子来展示如何在 MATLAB 中调用 `meijerG` 函数: ##### 计算单个数值 当已知所有的阶数向量 a b 及其对应的变量 z 之后可以直接计算该位置处的 Meijer-G 值: ```matlab result = meijerG([a], [b], z); disp(result); ``` 此处 `[a]`, `[b]` 是两个数组列表分别代表分子分母中的伽玛因子;而 `z` 则是要求解的位置坐标。 ##### 处理多个数据点 如果希望一次性获得一系列不同自变量下的结果,则可以通过循环结构或者更高效的方式——利用矩阵操作实现批量运算: ```matlab % 定义一组测试样本 samples = linspace(-5, 5, 10); % 初始化存储空间 results = zeros(size(samples)); for i = 1:length(samples) results(i) = meijerG([a], [b], samples(i)); end plot(samples, real(results), 'o-', ... samples, imag(results), '*-'); xlabel('Sample Points'); ylabel('Function Value'); legend({'Real Part', 'Imaginary Part'}); title('Plotting Multiple Values Using For Loop'); % 或者采用更加简洁的方法: Z = complex(linspace(-5, 5, 10)); % 创建复数序列作为输入 Results_Vectorized = arrayfun(@(x) meijerG([a], [b], x), Z); figure; subplot(2, 1, 1); plot(real(Z), real(Results_Vectorized), '-*r'); ylabel('Re(G)'); grid on; subplot(2, 1, 2); plot(imag(Z), imag(Results_Vectorized), '--og'); xlabel('Im(z)'); ylabel('Im(G)'); grid on; ``` 上述代码片段展示了两种不同的方法来进行多点评估:一种是通过显式的 for 循环逐次迭代每一个元素;另一种则是借助于 `arrayfun()` 函数配合匿名函数完成相同任务的同时提高了效率。 #### 解决常见问题 有时可能会遇到像 "未识别 MuPAD 符号引擎" 这样的错误提示[^3]。此时建议尝试更新至最新版本的 MATLAB 并确保安装包内包含完整的符号工具箱组件。另外也可以考虑重启应用程序甚至重新启动计算机以排除临时性的软件冲突情况。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流浪猪头拯救地球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值