【算法】树状数组数据结构

Part.I 预备知识

参考:
树状数组简单易懂的详解

Chap.I 一些前提和概念

  • 负数在计算机中的二进制表示
  • 前缀和:前缀和指一个数组的某下标之前的所有数组元素的和(包含其自身)。前缀和分为一维前缀和,以及二维前缀和。前缀和是一种重要的预处理,能够降低算法的时间复杂度。比如,一维前缀和的公式:sum[i] = sum[i-1] + arr[i] ; sum是前缀和数组,arr是内容数组。拥有前缀和数组后,我们可以在O(1)的时间复杂度内求出区间和。
  • 后缀和:
  • 离散化:把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小。当数据只与它们之间的相对大小有关,而与具体是多少无关时,可以进行离散化。设有四个数1234567, 123456789, 12345678, 123456,我们先对它们进行排序123456<1234567<12345678<123456789 → 1<2<3<4;所以原数据就可以映射为:2, 4, 3, 1

Chap.II lowbit 函数

暂且不考虑它的用途,首先了解这个函数是怎么算的。顾名思义,lowbit这个函数的功能就是求某一个数的二进制表示中最低的一位1,举个例子,x = 6,它的二进制为110,那么lowbit(x)就返回2,因为最后一位1表示2。

怎么求lowbit呢?一般有两种方式:

  • 先消掉最后一位1(x & (x - 1)x-1并不会影响lowbit左边的1),然后原数减去消掉最后一位1后的数x - (x & (x - 1))。比如8位机中x = 24的二进制表示为00001100x - 1的二进制表示为00001011x & (x - 1)的二进制表示为00001000,所以x - (x & (x - 1))其二进制表示为00000100就是我们要的lowbit
  • 根据『计算机表示负数的方法』(2的补码),数本身与数取反的与(x & -x)。比如8位机中x = 24的二进制表示为00001100-x的二进制表示为11110100x & -x的二进制表示为00000100就是我们要的lowbit

Part.II 树状数组

树状数组是一种数据结构,为什么要构造这样的数据结构呢?这是因为它在解决某些问题方面有其独特的优势。考虑这样一个问题:现有一个长度为n的数组a[n],我们想对其进行一些操作:比如『查询』(查询某个区间的所有元素的和),『更新』(将某个元素的值更改一下)。现在我想做q次更新和q次查询,这q次更新和q次查询是穿插操作的!


如果采用原始的数据结构,每一次『更新』的时间复杂度为O(1)(因为我想改i的值的话直接a[i]=value即可),每一次『查询』的时间复杂度为O(n)(因为要求n个数的和,就要做一个长度为n的循环);


如果采用树状数组的话,每一次『查询』的时间复杂度就可以减小到O(log(n)),但是每一次『更新』的时间复杂度也是O(log(n))。为什么呢?原因暂且不表,后面会详细分析。


Chap.I 树状数组的思想

下面先上一个图(来源于 知乎@orangebird)
在这里插入图片描述
不行的话,再上一个(来源于 CSDN@FlushHip)

在这里插入图片描述

树状数组结构(因为它的结构像数,又是数组所以叫做树状数组)是依托于二进制的,看着上面的图可以很清晰地掌握它的思路,但是为甚么要这样划分呢?这就要用到上面的lowbit了,下面考虑一个长度为8的数组a,新数组叫做c,新数组由旧数组通过上图的组织方式得到。

  • 查询:比如我想求sum(1:7),首先7的二进制表示为111 ∑ i = 1 n = 7 a i = ( a 1 + a 2 + a 3 + a 4 ) + ( a 5 + a 6 ) + a 7 \sum\limits_{i=1}^{n=7}{a_i}=(a_1+a_2+a_3+a_4)+(a_5+a_6)+a_7 i=1n=7ai=(a1+a2+a3+a4)+(a5+a6)+a7,写成伪码的方式(数组下标是二进制)就是sum(001:111)=c[111]+c[110]+c[100],就是sum(1:7)=c[7]+c[7-lowbit(7)]+c[6-lowbit(6)],时间复杂度就是 ⌈ l o g 2 ( n ) ⌉ \lceil log_2(n) \rceil log2(n)⌉,即O(log n)
  • 更新:比如我想更改a[3]的值,首先3的二进制表示为0011,那么对于长度为8的数组,我需要更新c[3], c[4], c[8];换言之,我就需要更新(二进制下标)a[0011], a[0100], a[1000];也就是说,我需要更新a[3], a[3+lowbit(3)], a[4+lowbit(4)]。显然,它的时间复杂度也是O(log n)

上面就解释了树状数组的『查询』和『更新』操作为什么时间复杂度是O(log n)的原因。
之前的我有个疑问:那为什么不同时保存ac呢?如果要做更新操作,直接在a上做,时间复杂度为O(1);如果要做查询操作,在c上做,时间复杂度是O(log n)。注意,『查询』和『更新』操作是交替进行的,在a上做『更新』,只有重构c之后,做后续『查询』时才能体现出『新息』,但是重构c的时间复杂度就是O(n),这样搞的话,优化就优化了个寂寞。

Chap.II 树状数组的构造

根据上面的讨论,构造出这样一个类,其中包含的函数有:

  • lowbit:获取一个整数的lowbit
  • BIT:构造函数,根据vector<int>初始化
  • update:更新函数,第i>0个数加val
  • query:查询函数,返回前m个数的和
  • print:输出tree
class BIT {
private:
    int n;              // the length of the tree
    vector<int> tree;   // the data tree

public:
    int lowbit(int x) { return x & -x; }

    BIT(vector<int> a)
    {
        n=a.size();
        vector<int>  temp(n,0);
        tree=temp;
        for(int i=0;i<n;i++)
        {
            update(i+1,a[i]);
        }
    }

    /**
     * @brief  updata the tree array
     * @param[in] i         the index, >=1
     * @param[in] val       the value of the update, =now-origin
     * @return              none
     */
    void update(int i, int val)
    {
        for(;i<=n;tree[i-1]+=val,i+=lowbit(i));
    }

    /**
     * @brief  query the summary of the first m terms
     * @param[in] m         the index, >=1
     * @param[out] sum      the sum
     * @return              int
     */
    int query(int m)
    {
        int sum=0;
        for(;m>0;sum+=tree[m-1],m-=lowbit(m));
        return sum;
    }

    void print()
    {
        for (int i = 0; i < n; cout << tree[i] << "    ", i++);
        cout << endl;
    }
};

调用示例:

int main()
{
    int test[7]={1,2,3,4,5,6,7};
    vector<int> origin(test, test + 7);
    BIT bt(origin);
    bt.print();                 // 打印 tree 的内容
    cout<<bt.query(5)<<endl;    // 输出前5项和
    bt.update(3,6);             // 第3项加6
    bt.print();                 // 打印更新后的 tree 的内容
    cout<<bt.query(5)<<endl;    // 输出更新后的前5项和
    getchar();
    return 0;
}
// ----------------- output ------------------
1    3    3    10    5    11    7
15
1    3    9    16    5    11    7
21

上面的代码可以免费下载:下载地址

Part.III 树状数组的应用

Chap.I LeetCode: 2426. 满足不等式的数对数目

没错,就是因为刷题的时候遇到这个题2426,所以才有这篇笔记的,最后终于露出了獠牙(RUA!!)。


Sec.I 题目描述与分析

首先,题目描述为:

给你两个下标从 0 开始的整数数组 nums1nums2 ,两个数组的大小都为 n ,同时给你一个整数 diff,统计满足以下条件的数对 (i, j)

  • 0 <= i < j <= n - 1
  • nums1[i] - nums1[j] <= nums2[i] - nums2[j] + diff

请你返回满足条件的 数对数目 。

解题视频:bilibili@灵茶山艾府


题目分析(基于python):

  • 首先进行移项: nums1[i] - nums2[i] <= nums1[j] - nums2[j] + diff,令nums[i] = nums1[i] - nums2[i] ,我们只需找到当0 <= i < j <= n - 1 时满足nums[i] <= nums[j] + diff的所有数据对(i, j)即可。
  • 因为nums[i]中不免会存在数值相同的元素,因此我们可以将其用set进行唯一化,然后进行排序得到b
  • 离散化:构造一个树状数组bt(所有元素初始化为0),树状数组的长度等于num中互异元素的个数len(set(nums))(相当于将nums分为这么多档次【不论数据大小,只关心数据的相对大小,这就是离散化】,树状数组的每一个元素存储的是在这个档次的数据个数)。树状数组有两个主要函数,一个是add(x)(将索引为x的值加一,这里值的是上面的A,但是树状数组存储的是C,所以要变的不只一个元素),另一个是query(x)(求索引小于x的所有数据的和)。
  • 我们用一个指针i遍历nums,在遍历的过程中并填充树状数组bt,树状数组存储的是x=nums[i]左边每一个『档次』元素的个数,我们先用index=bisect_right(b, x + diff)b中找到元素大于等于x+diff的索引最小值,然后用query(index)统计nums[i]左边元素大于等于x+diff的数目和(也就是找到满足nums[m] <= nums[i] + diffm<i的所有的m的个数和)
  • 然后用index2=bisect_left(b, x)得到b中元素小于等于x的所有元素的索引最大值(也就是找到x所对应的『档次』索引),然后用add(index2)函数将其加入树状数组中去,为进入下一次query(i+1)做准备。
  • 对所有的query(index)求和就得到我们所需

注意,这道题虽然使用了树状数组,但是数组存储的并不是元素值,而是元素个数。另外,树状数组并不是一下就构造好的,而是在遍历查询添加元素的过程中逐步建立的。知道这两点,看着视频讲解应该就很好理解了。笔者已经尝试尽可能地将这个思想整理出来,但是回过头看还是有点拗口 orz


Sec.II 代码实现

下面是C++代码实现

class BIT {
private:
    int length=0;
    vector<int> tree;
public:
    BIT(int n)
    {
        length=n;
        vector<int> temp(n,0);
        tree=temp;
    }
    int lowbit(int x){ return x & -x; }
    void add(int i)
    {   // i=index+1,>=1
        while(i<=length){ tree[i-1]++; i=i+lowbit(i); }
    }
    int query(int i)
    {   // i=index+1,>=1
        int sum=0;
        while(i>0){
            sum+=tree[i-1];
            i-=lowbit(i);
        }
        return sum;
    }
};

class Solution {
public:
    long long numberOfPairs(vector<int>& nums1, vector<int>& nums2, int diff) {
        int n=nums1.size();
        vector<int> nums(n,0);
        for(int i=0;i<n;i++) { nums[i]=nums1[i]-nums2[i]; }
        vector<int> b(nums);
        sort(b.begin(),b.end());
        b.erase(unique(b.begin(),b.end()),b.end());
        BIT bt(b.size());
        long ans=0;
        for(int i=0;i<n;i++)
        {
            ans+=bt.query(upper_bound(b.begin(),b.end(),nums[i]+diff)-b.begin());
            bt.add(lower_bound(b.begin(),b.end(),nums[i])-b.begin()+1);
        }
        return ans;
    }
};

值得注意的点:

  • upper_bound(b.begin(),b.end(),val)函数的作用是查找容器b(数据已经有序)中元素值大于等于val的最小索引迭代器(可以理解为指针),*upper_bound(xx)返回索引的元素值,upper_bound(xx)-b.begin()是索引值
  • upper_bound(b.begin(),b.end(),val)函数的作用是查找容器b(数据已经有序)中元素值小于val的最大索引迭代器(可以理解为指针),其他的使用同upper_bound

下面是python的代码实现:

class BIT:
    def __init__(self,n: int):
        self.length=n
        self.tree=[0]*n
    def add(self, i: int):
        while(i<=self.length):
            self.tree[i-1]+=1
            i+=(i & -i)
    def query(self, i: int) -> int:
        sum=0
        while(i>0):
            sum+=self.tree[i-1]
            i-=(i & -i)
        return sum
 

class Solution:
    def numberOfPairs(self, nums1: List[int], nums2: List[int], diff: int) -> int:
        n=len(nums1)
        nums=[0]*n
        for i in range(n):
            nums[i]=nums1[i]-nums2[i]
        b=sorted(set(nums))
        bt=BIT(len(b))
        ans=0
        for i in range(n):
            ans+=bt.query(bisect_right(b,nums[i]+diff))
            bt.add(bisect_left(b,nums[i])+1)
        return ans

Chap.II LeetCode: 51. 数组中的逆序对

这道题应该是比较经典的一道题,毕竟都已经被『剑指 Offer』录入了。它实际上和上面的一道题很像,比那道题简单。因此下面就不分析了,只贴一个解决方案


下面是基于python的代码:

class Solution:
    def reversePairs(self, nums: List[int]) -> int:
        b = sorted(set(nums))
        ans = 0
        n = len(b)
        bt = BIT(n)
        for x in nums:
            temp=n-bisect_left(b, x)
            ans += bt.query(temp-1)
            bt.add(temp)
        return ans

class BIT:
    def __init__(self,n: int):
        self.length=n
        self.tree=[0]*n
    def add(self, i: int):
        while(i<=self.length):
            self.tree[i-1]+=1
            i+=(i & -i)
    def query(self, i: int) -> int:
        sum=0
        while(i>0):
            sum+=self.tree[i-1]
            i-=(i & -i)
        return sum
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
很抱歉,根据提供的引用内容,没有找到关于迪杰斯特拉算法树状数组优化的信息。但是,我可以为您介绍一下迪杰斯特拉算法和树状数组的基本概念和应。 迪杰斯特拉算法,也称为狄克斯特拉算法,是一种用于解决图中最短路径问题的算法。该算法的基本思想是从起点开始,逐扩展到距离起点更远的节点,直到到达终点为止。在扩展的过程中,通过比较不同路径的距离,选择距离最短的路径进行扩展,直到到达终点。 树状数组,也称为二叉索引树,是一种用于高效维护序列前缀和的数据结构。该数据结构可以在O(log n)的时间内完成单点修改和区间查询操作,因此被广泛应用于解决各种算法问题,如逆序对问题、区间最大值/最小值问题等。 虽然迪杰斯特拉算法和树状数组看似没有直接关系,但是在解决某些特定的问题时,两者可以结合使用,以达到更高效的解决方案。例如,在解决带权图最短路径问题时,可以使用迪杰斯特拉算法结合树状数组进行优化,以达到更快的计算速度。 具体来说,可以使用树状数组维护一个优先队列,用于存储当前已经扩展的节点和它们的距离。在每次扩展节点时,可以使用树状数组快速找到距离最小的节点,并将其从队列中删除。这样可以避免使用传统的堆数据结构,从而提高算法的效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流浪猪头拯救地球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值