一文走进GpuGeek | 实例

实例就是一台云服务器,包含CPU、内存、操作系统、网络、磁盘等最基础的计算组件。GPUGEEK支持用户自定义CPU、内存和操作系统等配置,支持在线配置升级。

GpuGeek-弹性|便捷|划算,您的专属AI云

创建实例

在【个人空间】页面,或者通过其他页面的【创建实例】按钮跳转至创建页面,

高可用云为高运算量,安全等级高,稳定性高,适合企业级业务需求(支持网盘存储共享数据);社区云价格普惠,适合个人用户的小型实验。(不支持网盘存储共享数据)。

选择存储数据的网盘以及对应的数据中心,并配置其他信息

注意:实例的处理器核心与内存是根据租用显卡与机器总显卡的占比计算的。以租用 64 核、512 GB、8 张显卡的机器为例。如果只租用了 1 张显卡,则处理器分配 64 / 8 = 8 核,内存限制为 512 / 8 = 64 GB。

核实所选机器的配置和价格后点击【创建实例】按钮完成创建。

实例管理

创建后会自动跳转至【实例管理】页面,在此页面能看到和管理所有已创建的实例。 在实例卡片中,可以看到实例ID、付费模式、配置、磁盘使用量等等,点击操作按钮进行实例操作,

  • 开机/关机,直接点击按钮进行实例的开关机操作,注意,实例在关机状态中仍会收取存储费用,记得及时删除释放不再需要的实例。
  • 登录,实例登录,详见1.3实例登录
  • 日志,点击查看实例日志
  • 查看监控,进入【实例监控】页面,查看GPU、CPU和硬盘的具体使用情况。
  • 数据同步,点击跳出弹窗,支持在阿里云、腾讯云、华为云和七牛云和实例之前同步数据,也可以跨实例同步数据,但仅在开机时使用,且必须是同一数据盘下的实例间(仅限高可用云)。

点击【更多】可进行更多的实例操作,

  • 无卡启动 平台实例支持无卡启动,可进行数据同步、克隆实例等操作。无卡启动数量仅限2个。
  • 备份镜像 点击后备份当前系统盘基础操作系统、应用及软件环境的个性化配置,在创建实例时可选择备份的镜像而无需再次配置。创建备份镜像需要一定时间,耐心等待创建完成。仅开机时可操作。
  • 升降配置 点击在弹窗中选择需要升降配的GPU的数量,也可以选择0为无卡启动。仅开机时可操作。
  • 扩缩容数据盘 点击在弹窗中填写要变更的容量。仅开机时可操作。
  • 变更计费方式 点击在弹窗中选择你要变更的方式,仅开机时可操作。若之前为包天包周包月,则会按照当下选择的计费方式计算所有已使用的费用,请留意,有些情况下不变更计费方式会更划算。
  • 创建自定义端口 企业用户认证后可开启,仅限开机时操作。
  • 删除实例 必须先关机,才可进行实例删除,删除后的实例数据不可恢复。

实例登录

  1. 实例可通过点击控制台 JupyterLab 后跳转到JupyterLab页面,然后点击 "终端" 即可进入。

  2. Windows 可以通过 Xshell 或者 FinalShell 等 ssh 工具进行登录,MacOS 可以使用自带终端或 iterm2 进行登录,具体方式可参考 SSH方式登录实例

GpuGeek-弹性|便捷|划算,您的专属AI云

### YOLOv8 网络结构详解 #### 1. 配置文件解析 YOLOv8 的配置通过 YAML 文件定义,此文件不仅规定了模型架构参数还包含了训练超参等内容。这些设置对于构建和调整模型至关重要[^1]。 #### 2. Backbone: 改进型 CSPDarknet 作为特征提取的基础部分,YOLOv8采用的是基于CSP(Cross Stage Partial Network)设计思路优化后的 Darknet 架构,该版本继承并增强了之前版本的优点,在保持计效率的同时提升了检测精度[^2]。 ##### 2.1 Conv 层 卷积操作是深度学习视觉任务中的核心组件之一。在YOLOv8里,Conv层负责执行标准的二维空间滤波器应用过程来捕捉图像局部模式特性。 ```python import torch.nn as nn class Conv(nn.Module): def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) ``` ##### 2.2 C3 与 C2f 结合模块 为了进一步提升性能,C3(即BottleneckCSP)被引入用来替代传统的Residual Block;而C2f则是对后者的一种变体形式,两者共同作用于加深网络表达能而不显著增加运负担上有着出色表现。 ##### 2.3 SPPF(Spatial Pyramid Pooling - Fast) SPPF是一种高效的多尺度融合机制,它能够有效增强模型的感受野范围从而更好地处理不同大小的目标对象识别问题。 ##### 2.4 上采样(Upsample) Upsample用于实现高分辨率特征映射重建工作,这对于最终输出预测框位置具有重要意义。通常情况下会配合最近邻插值法完成这一过程。 ##### 2.5 Detect 层 Detect层承担着将前面各阶段所学到的信息汇总起来形成具体类别标签及边界框坐标的重任。其内部实现了锚点设定、损失函数计等功能逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值