GpuGeek新增国产专区——昇腾910B 64G强势上线!!

🎉好消息好消息,GpuGeek平台新增国产专区,现已上线华为昇腾910B 64G GPU资源,还不快和我一起用起来~!!

体验地址:GpuGeek-弹性|便捷|划算,您的专属AI云 

相较于前代产品,华为昇腾910B作为面向AI训练和推理场景的高性能处理器,在性能上实现了显著提升。采用先进的制程工艺和架构设计,提供强大的单卡算力,满足大规模AI模型训练的需求。同时,其高带宽内存和优化的计算单元设计,确保了数据处理的高效性,有效缩短了AI模型的训练周期。

昇腾910B的核心优势不仅在于其硬核性能。它深度集成并优化了华为自主研发的全流程AI开发框架——MindSpore,以及强大的异构计算架构CANN。这套完整的“软硬一体”解决方案,为开发者提供了从算法设计、模型训练、部署到推理的全栈支持,降低了AI应用开发门槛,提升了开发效率。

在国产异构算力适配方面,GpuGeek将坚持开放合作的态度,积极拥抱更多国内优秀的芯片厂商和解决方案提供商,构建一个更丰富、更具弹性的国产算力资源池。我们将不断优化这些国产算力资源在GpuGeek上的调度、管理和使用体验,确保不同算力资源的高效协同,为客户提供“一站式”的国产算力解决方案

在GpuGeek平台功能完善方面,会基于用户需求和技术发展趋势,不断迭代升级。接下来,我们将对昇腾910B等国产芯片底层进行优化,提升其与云平台各项服务的融合度,例如在弹性计算、存储、网络等方面进行协同优化。同时,我们也会继续完善基础服务,提供更多的GPU资源、更便捷的模型训练服务、推理服务等,降低用户使用门槛!

🎊GpuGeek平台不仅有新资源的上线,还有新的镜像、大模型不断登陆镜像市场模型市场,等待各位AI极客去探索。最重要的是,4月的优惠活动一波接着一波,大家千万不要错过哦!!

想了解更多信息,请前往:GpuGeek-弹性|便捷|划算,您的专属AI云 

### 升腾910B与NVIDIA A100性能特性对比 #### 性能参数概述 升腾910B处理器采用7nm工艺制造,专为AI训练设计,在半精度浮点运(FP16)下可提供高达256 TFLOPS的[^1]。相比之下,NVIDIA A100基于安培架构,同样面向数据中心级的人工智能应用,支持Tensor Core技术,在混合精度模式下的峰值性能可达19.5 TFLOPS FP32, 以及超过312 TFLOPS Tensor FPOPS[^2]。 #### 架构特色 升腾系列芯片由华为自主研发,内置达芬奇3D Cube计引擎,特别优化了神经网络推理过程中的矩阵乘法操作效率;而NVIDIA A100则延续了GPU通用性强的特点,除了传统的图形处理外还广泛应用于科学计、机器学习等领域,并通过NVLink互联技术支持多卡并行加速[^3]。 #### 实际应用场景表现 对于特定框架如MindSpore等环境内运行时,由于软硬件协同调优的原因,升腾910B可能展现出更佳的整体效能;但在跨平台兼容性和生态建设方面,目前市场上更多开发者倾向于选择成熟度更高的CUDA生态系统所支撑的NVIDIA产品线[^4]。 ```python import numpy as np # 假设数据集大小 dataset_size = (8192, 8192) # 创建随机测试矩阵用于模拟工作负载 matrix_a = np.random.rand(*dataset_size).astype(np.float16) matrix_b = np.random.rand(*dataset_size).astype(np.float16) def benchmark(matrix_multiply_function): import timeit start_time = timeit.default_timer() result_matrix = matrix_multiply_function(matrix_a, matrix_b) end_time = timeit.default_timer() return end_time - start_time # 这里仅作为示意,实际环境中应替换为Ascend 910B和A100的具体API实现 ascend_910b_time = benchmark(lambda a,b : ...) nvidia_a100_time = benchmark(lambda a,b : ...) print(f"Achieved {ascend_910b_time:.4f} seconds on Ascend 910B vs {nvidia_a100_time:.4f} seconds on NVIDIA A100.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值