推荐大家关注3DCV,一个关注3D技术,更关注3D产业的公众号。点击下方卡片,关注3DCV公众号:
本文作者:3DCV@HT | 来源:3DCV
介绍
NeRF
(Neural Radiance Fields)是一种先进的计算机图形学技术,能够生成高度逼真的3D场景。它通过深度学习的方法从2D图片中学习,并生成连续的3D场景模型。NeRF
的工作原理是自监督的,通过在有限的输入视图上训练数据,可以用较少的数据集生成高质量的渲染。相比传统方法中使用离散化的网格或体素表示场景,NeRF
的连续函数表示具有优势,并能够从任意角度渲染,产生令人惊叹的高质量渲染效果。
NeRF
的引入在2020年由 Ben Mildenhall 等人的论文 "NeRF
: Representing Scenes as Neural Radiance Fields for View Synthesis"中提出。这项研究是在加州大学伯克利分校与谷歌的联合项目中完成的。NeRF
不仅可以从训练时使用的输入视图角度渲染场景,还能够从任意角度进行渲染,创造出优于现有渲