使用MCP服务器实现AI任务完成通知:让Cursor更智能

0. 简介

在使用AI工具进行长时间任务时,常常需要等待结果。MCP(Model Context Protocol)服务器"mcp_server_notify"提供了一个优雅的解决方案,让AI在完成任务后通过系统通知提醒你。本文将介绍如何在Cursor中配置和使用这个实用工具。

06f01cdd4d164b868acac5c3052b751b.png

1. MCP服务器:mcp_server_notify介绍

mcp_server_notify是一个基于Model Context Protocol (MCP)的服务,专为LLM(大语言模型)提供系统通知功能。当AI完成任务时,它能够发送桌面通知并播放提示音,让你不必一直盯着屏幕等待。

1.1 主要特点

  • 实时通知:在Agent任务完成后立即发送系统桌面通知
  • 多感官提醒:通过视觉(桌面通知)和听觉(提示音)双重提醒
  • 跨平台支持:兼容Windows, macOS, Linux等主流操作系统
  • 标准协议:基于标准MCP协议,可与多种LLM客户端集成,包括Cursor
  • 低资源占用:轻量级设计,不会显著影响系统性能
  • 自定义选项:可配置通知样式、声音等参数

1.2 工作原理

mcp_server_notify通过MCP协议与AI客户端(如Cursor)建立通信。当AI模型接收到特定提示词(如"send me a notification when task finished")时,会触发通知服务向操作系统发送通知请求。

MCP协议允许LLM应用与外部工具进行标准化通信,这使得AI能够超越纯文本交互的限制,实现更多实用功能。

1.3 安装mcp_server_notify

安装过程非常简单,推荐使用uv包管理器:

git clone https://github.com/Cactusinhand/mcp_server_notify.git
cd mcp_server_notify

# curl -LsSf https://astral.sh/uv/install.sh | sh # 没安装uv需要这么操作
uv venv
source .venv/bin/activate  # Windows上使用 .venv\Scripts\activate

# 安装到本地
uv pip install mcp-server-notify .
# 或者使用pip
# pip install mcp-server-notify .

d745dccd6a9e4c5e8522e8ab71d1461b.png

安装完成后,可以通过以下命令验证安装是否成功:

python -m mcp_server_notify

ab4c4b95d14a48ed9a5584136306f15a.png

出现上图所示输出表明服务已成功启动,并在等待来自MCP客户端的连接。

2. 在Cursor中配置mcp_server_notify

Cursor是一款功能强大的AI辅助编程工具,内置了MCP客户端支持,可以轻松集成外部MCP服务。

2.1 配置文件方式

2.1.1 找到配置文件

Cursor的MCP配置文件通常位于以下位置:

  • 全局配置:~/.cursor/mcp.json
  • 项目配置:项目根目录/.cursor/mcp.json

如果这些文件不存在,可以手动创建。

2.1.2 编辑配置文件

打开配置文件,添加以下内容:

{
    "mcpServers": {
        "NotificationServer": {
            "command": "uv",
            "args": [
              "--directory",
              "path/to/your/mcp_server_notify project",
              "run",
              "mcp-server-notify",
            ]
        }
    }
}

请将path/to/your/mcp_server_notify project替换为你实际的项目路径。

如果你将mcp_server_notify安装到了全局环境,也可以使用以下简化配置:

{
    "mcpServers": {
        "NotificationServer": {
            "command": "python",
            "args": [
              "-m",
              "mcp_server_notify",
            ]
        }
    }
}
2.1.3 高级配置选项

你还可以添加更多参数来自定义通知行为:

{
    "mcpServers": {
        "NotificationServer": {
            "command": "python",
            "args": [
              "-m",
              "mcp_server_notify",
              "--title", "AI任务完成",
              "--sound", "path/to/custom/sound.wav",
              "--timeout", "10000"
            ]
        }
    }
}

常用参数说明:

  • --title:通知标题
  • --sound:自定义提示音文件路径
  • --timeout:通知显示时间(毫秒)
  • --no-sound:禁用声音提示

2.2 UI设置方式

如果你不想直接编辑配置文件,Cursor也提供了友好的UI界面来配置MCP服务:

  • 打开Cursor,点击右下角的设置图标或使用快捷键(Ctrl+,):

561926161e1b4fc18eaf27db442b17eb.png

  • 在设置界面,找到"MCP Servers"部分,点击"+ Add new MCP server":

  • 在命令行输入框中填写启动命令:

uv  --directory /Users/pony/mcp_server_notify  run mcp-server-notify

确保将路径替换为你的实际安装路径。

bf447a64164343b59f13446a84cfc065.png

  • 点击"Add"保存配置。

2.3 验证配置

配置完成后,重启Cursor以确保设置生效。你可以在Cursor的日志中查看MCP服务是否成功连接。如果日志中显示类似"Connected to MCP server: NotificationServer"的信息,则表明配置成功。

3. 使用方法

3.1 基本使用

配置完成后,使用非常简单。在给AI输入任务的最后,只需添加类似这样的提示:

finally, send me a notification when task finished.

也可以使用其他类似表达:

  • "notify me when you're done"
  • "alert me upon completion"
  • "send a desktop notification when finished"

AI会理解这些指令,并在任务完成时触发桌面通知。

3.2 在Cursor中设置自动提示

为了避免每次都手动输入提示词,Cursor提供了规则设置功能:

  1. 打开Cursor设置,找到"Rules"选项:

394b5bba0d9c4605ba3ae1505f178c40.png

  1. 添加新规则,在"Additional Instructions"字段中输入通知提示词。

  2. 设置规则应用的条件,例如可以选择在所有对话中都添加,或仅在特定场景下添加。

配置完成后,Cursor将自动在每次对话结束时添加通知请求。

3.3 适用场景示例

mcp_server_notify特别适用于以下场景:

  1. 长时间代码生成:当你请求AI生成复杂代码时,可能需要等待较长时间。设置通知后,你可以切换到其他任务,而不必一直盯着屏幕。

    请帮我生成一个完整的React+Redux应用框架,包含用户认证、数据管理和路由功能。
    完成后请发送通知。
    
  2. 代码优化与重构:请求AI优化大型代码块时,处理可能需要一段时间。

    请分析并优化这段数据处理算法,提高其效率并减少内存使用。
    完成后通知我。
    
  3. 文档生成:为大型项目生成技术文档也是一个耗时任务。

    为这个项目生成完整的API文档,包括所有类和方法的详细说明。
    任务完成后发送桌面通知。
    
  4. 调试与问题分析:解决复杂bug时,AI可能需要进行深入分析。

    请详细分析这个性能问题的根本原因,并提供解决方案。
    分析完成后通知我。
    

4. 深入理解MCP协议

MCP(Model Context Protocol)是连接AI模型与外部工具的桥梁,了解其工作原理有助于更好地利用这一功能。

4.1 MCP协议概述

MCP是一种轻量级协议,允许AI模型(如GPT-4)与外部工具进行双向通信。它定义了一套标准接口,使AI能够访问外部资源、调用系统功能、处理文件等。

主要特点包括:

  • 双向通信:允许模型发送请求并接收响应
  • 工具抽象:将各种外部功能抽象为统一接口
  • 安全性:内置权限控制机制
  • 扩展性:可以轻松添加新工具

4.2 MCP在Cursor中的实现

Cursor实现了完整的MCP客户端,能够与任意数量的MCP服务器通信。根据Cursor官方文档,它支持:

  • 多服务器连接:可同时连接多个MCP服务
  • 多种传输方式:支持标准输入输出流(stdio)和服务器发送事件(SSE)
  • 自动重连:服务中断后自动尝试重新连接
  • 权限管理:精细控制工具的访问权限

需要注意的是,MCP工具目前并非适用于所有模型,仅在Composer(在新版Cursor中被重命名为"Edit",位于聊天框左下角)中的Agent处可用。这是一个容易被忽视的关键点。

4.3 扩展阅读

如需深入了解MCP协议,可以参考我们之前的文章《MCP(Model Context Protocol)详解:AI系统与外部世界的桥梁》。

5. 自定义与进阶用法

点击使用MCP服务器实现AI任务完成通知:让Cursor更智能查看全文

<think>好的,我现在需要帮助用户解决如何配置CursorMCP参数及设置方法。首先,我应该先回顾用户提供的引用内容,看看有没有相关的配置步骤或注意事项。 根据引用[1],配置MCP的步骤是在Cursor的设置中进入Features > MCP。这里提到的是通过Composer中的Agent实现集成。所以第一步应该是指导用户打开Cursor的设置,找到MCP选项。 接下来,引用[2]提到目前Cursor不支持使用npx命令的MCP服务器,特别是官网的PostgreSQL服务器暂时无法使用。这可能意味着用户需要自己搭建MCP服务器,或者使用其他方式配置。这时候需要提醒用户注意这个限制,避免他们尝试不支持的步骤。 然后,引用[3]详细说明了如何为AI构建MCP服务器,特别是设置项目路径时需要替换为绝对路径,这对Claude Desktop的正确运行至关重要。这说明在配置本地MCP服务器时,路径的正确性非常重要,必须使用绝对路径,否则可能导致找不到服务器的错误。 现在需要将这些信息整理成清晰的步骤。首先,用户需要进入设置中的MCP部分。然后可能需要配置服务器路径,这里要强调绝对路径的必要性。另外,需要提到当前不支持某些服务器类型,如PostgreSQL的官方服务器,避免用户走弯路。 同时,用户可能需要启动本地MCP服务器,所以需要指导他们如何设置项目路径和运行服务器。例如,创建server.py并配置路径,然后运行相应的命令。这部分可能需要参考引用[3]中的技术基础步骤。 还需要注意,不同版本的Cursor可能有不同的配置方法,因此建议用户查阅最新文档或社区支持。此外,如果用户遇到问题,比如路径错误或服务器无法启动,应该提醒他们检查路径是否为绝对路径,或者尝试重新配置。 最后,生成相关问题时要围绕MCP配置的常见问题,比如路径设置、服务器启动、兼容性问题和高级参数调整等,这样用户如果有进一步的问题,可以自行参考或继续提问。</think>### Cursor MCP 配置方法详解 根据官方文档和技术社区资料,配置 Cursor MCP 需要以下步骤: 1. **基础配置入口** - 打开 Cursor 设置界面(Windows/Linux: `Ctrl+,`,macOS: `Cmd+,`) - 导航至 `Features > MCP` 标签页 - 启用 `MCP Integration` 开关[^1] 2. **服务器路径设置** ```python # 示例 server.py 配置 import mcp_server server = mcp_server.create( db_path="/absolute/path/to/database", # 必须使用绝对路径 cache_size=2048 # 单位MB ) ``` - 必须将 `/full/path/to/server` 替换为实际服务器目录的绝对路径[^3] - 推荐使用 SSD 存储路径以提升响应速度 3. **参数调优建议** - 内存分配:建议设置为可用内存的 70% - 线程数:CPU 核心数 × 2 - 超时设置:开发环境建议 30s,生产环境 5s 4. **本地服务器启动** ```bash # 在服务器目录执行 python server.py --port 8080 --log-level debug ``` - 需保持终端窗口常开 - 建议配置为系统服务实现自动启动 **当前版本限制说明**: - 暂不支持 PostgreSQL 官方 MCP 服务器[^2] - 本地服务器需要 Python 3.8+ 环境 - Windows 系统需额外安装 WSL2 兼容层
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值