蒸馏预训练模型架构:深度自注意力蒸馏(NeurIPS 2020) MINILM

论文个人理解

目的:

这篇paper介绍了蒸馏预训练模型的通用架构(预训练蒸馏), 与所有模型蒸馏方法一样,解决的也是student模型和teacher模型的GAP,怎么使用参数量小、推理时间短的student模型尽可能获取teacher模型的能力

方法

  1. 深度自注意力蒸馏: 蒸馏self-attention矩阵和value-value矩阵
  2. 助手机制:当teacher和student模型参数差异很大时,先使用teacher蒸馏assistant,再使用assistant蒸馏到student

结论

  1. 在自然语言理解任务上吊打DistillBERT和TinyBERT(当时state of art)
  2. 在自然语言生成、多语言任务上取得不错的效果(competitive performance)

论文精读

摘要

本篇论文提出跟任务无关,蒸馏预训练模型的通用架构,只蒸馏teacher最后一层的self-attention矩阵和value-value矩阵,并且提出助手机制(助手机制也就是为什么MiNILM能获得State of art的原因)

        从上图看出,DistillBERT需要隐层维度相同(通常student先进行矩阵映射到和teacher相同的维度)、TinyBERT是采用层层映射的关系(例如student两层,那么蒸馏映射关系12-2,6-1),MobileBERT就是全都要,并且逐层蒸馏。不同于之前的蒸馏方法,MiniLM只蒸馏最后一层的attention矩阵和value-value矩阵(方便好用有木有)

模型结构

模型结构如上图介绍,主要是两块Attention Transfer和Value-Relation Transform

蒸馏细节

  1. Attention:如上图所示,Attention就是Q(Queries)、K(Keys)计算的矩阵,如果bert参数设置head-number设置为12,那么最后一层就是12*seq*seq维度的Attention(seq代表文本长度),这个一般bert内部都计算好了;
  2. Value-Relation:就是values矩阵的平方,计算可参考Q、K计算Attention的过程;
  3. Transfer:代表attention和value-relation怎么蒸馏到student上的Loss,本文采用KL-loss(文中作者实验论证了的确比MSE好)

论文成果

对比之前提出的DistillBERT、TinyBERT,MiniLM取得state of art效果

消融实验

  1. 加入value-Relation蒸馏比不加入效果好

  2. 使用KL-loss比MSE好

  3. MiniLM比逐层蒸馏好

自然语言生成

自然语言生成任务模型取的不错的效果(competitive result)

  1. 问题生成

  2. 摘要总结

多语言任务

  1. 分类

  2. 问答

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值