用于图像分类的CNN:ImageNet Classification with Deep Convolutional Neural Networks

本文介绍了Alex Krizhevsky等人在2012年使用深度卷积神经网络(CNN)对ImageNet数据集进行图像分类的研究。网络包含5个卷积层和3个全连接层,利用ReLU激活函数、GPU并行计算和数据增强来减少过拟合。通过在训练过程中应用dropout正则化,模型在ILSVRC-2010竞赛中取得了15.3%的TOP-5测试错误率,显著优于其他参赛者。研究证明深度对于此类任务的重要性,并为后续的深度学习研究奠定了基础。
摘要由CSDN通过智能技术生成

ImageNet Classification with Deep Convolutional Neural Networks

NIPS-Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton-2012

思路

训练了一个大型的深度卷积神经网络,将ImageNet LSVRC-2010竞赛中的120万张高分辨率图像分类为1000个不同的类别。
神经网络有6000万个参数和650000个神经元,由五个卷积层组成,其中一些层后面是最大池层,还有三个全连接层,最后是1000路softmax。
文章选择使用GPU实现卷积运算,有比较高效的效率;使用非饱和神经元。
为了减少全连接层中的过拟合,采用dropout正则化。
模型的变体在比赛中获得了15.3%的TOP-5测试错误率[NO.1],第二名的错误率为26.2%。

数据集介绍

ImageNet是一个包含超过1500万个标记的高分辨率图像的数据集,属于大约22,000个类别。
ILSVRC竞赛使用ImageNet的一个子集,在1000个类别中的每个类别中大约有1000张图像。总共有大约120万张训练图像,5万张验证图像和15万张测试图像。
ILSVRC-2010是ILSVRC的唯一版本,测试集标签可用,因此这是我们执行大部分实验的版本。由于我们也在ILSVRC-2012竞赛中输入了我们的模型,因此也报告了这个版本的数据集的结果,其中测试集标签不可用。
数据集由可变分辨率的图像组成,而模型需要不变的输入维度。因此将图

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值