DCRec:Debiased Contrastive Learning for Sequential Recommendation

DCRec是为解决顺序推荐中对比学习的偏见问题而提出的框架,通过自适应一致性感知增强,捕获序列模式和用户依赖。它使用多通道一致性加权网络来减轻数据增强中的流行偏见,同时结合Transformer和图神经网络,实现统一的顺序视图和全局协作关系建模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Debiased Contrastive Learning for Sequential Recommendation

ACM-Yuhao Yang,Chao Huang,Lianghao Xia,Chunzhen Huang,Da Luo,Kangyi Lin-2023

摘要

目前的顺序推荐系统被提出来解决动态用户偏好学习的各种神经技术,如Transformer和图神经网络(GNNs)。然而,从高度稀疏的用户行为数据的推断可能阻碍顺序模式编码的表示能力。为了解决标签短缺问题,最近提出了对比学习(CL)方法以两种方式执行数据增强:(i)随机破坏序列数据(例如,随机掩蔽、重新排序);(ii)跨预定义的对比视图对齐表示。
在解决流行的偏见和用户的一致性和真实的兴趣时,CL为基础的方法有局限性。
本文模型:统一的顺序模式编码与全局协作关系建模,通过自适应一致性感知增强。我们的去偏对比学习框架有效地捕捉了序列内项目转换的模式和序列中用户之间的依赖关系。

介绍

使用RNN或基于注意力的模型来捕获用户随时间推移而变化的兴趣,严重依赖于足够的交互数据和语义丰富的序列,使得它们不足以解决推荐中的稀疏性,短序列和噪声等问题。
我们认为,各种研究领域的现有方法还没有充分解决数据增强中固有的流行性偏差。
在一些模型中,会由于对数据的认知不正确,导致错误的数据增强,从而误导用户偏好学习。我们通过对三个模型(DCRec

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值