DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

DeepFM结合了因子分解机(FM)和深度学习,旨在捕捉推荐系统的特征交互。FM组件处理低阶交互,而深度组件处理高阶交互。通过共享特征嵌入,DeepFM无需预训练即可端到端学习,提高了效率和性能。实验表明DeepFM在AUC和Logloss上优于其他模型,如LR, FM, FNN, PNN和Wide&Deep。" 98217646,7481619,numpy矩阵运算:加法与多矩阵乘法,"['Python', 'numpy库', '数值计算', '矩阵运算']
摘要由CSDN通过智能技术生成

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

IJCAI-17-Huifeng Guo, Ruiming Tang, Yunming Ye,Zhenguo Li, Xiuqiang He

思路

学习用户行为背后的复杂特征交互对于最大化推荐系统的点击量十分重要。但是之前的方法中要么高阶-低阶存在强烈偏差,要么需要专业知识的工程。DeepFM表明,可以获得一个端到端的高阶低阶相互作用的模型。
在DeepFM中,同时结合了用于推荐的因子分解机和用于特征学习的深度学习能力。

问题描述

假设训练数据是n个(X,y)实例,X是包括用户和项目的m字段数据,y是标签=0、1,1表示用户点击了这个项目,0表示没有。X可能包括分类字段(如性别、位置)和连续字段(如,年龄),每个分类字段表示为一个one-hot编码向量,连续字段表示为值本身或离散化后的one-hot编码向量。然后每个实例转化为(x,y),在这里插入图片描述是d维向量,其中在这里插入图片描述是第X的第j个字段的表示。通常情况下ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值