HGCL:Heterogeneous Graph Contrastive Learning for Recommendation

Heterogeneous Graph Contrastive Learning for Recommendation

解决的问题

推荐场景通常涉及异构关系(例如,社交感知的用户影响、知识感知的项目依赖性),其包含用于增强用户偏好学习的富有成效的信息。
本文研究了异构图增强的关系学习推荐问题。异构辅助信息对交互的影响可能因用户和项目而异,为了推进这一思想,我们用Meta网络增强了我们的异构图对比学习,以允许具有自适应对比增强的个性化知识Transformer。

HGCL模型

我们首先利用异构图神经网络作为编码器,在编码后的嵌入中保留了异构关系的丰富语义。为了科普个性化增强,我们提出了一个定制的对比学习框架,该框架设计了一个Meta网络来编码用户和项目的个性化特征。它允许我们执行特定于用户和项目的增强,以便在不同的关系视图之间传输信息信号。
在这里插入图片描述
注意这里训练了一个自门控模块,以从公共空间中导出用户社交关系和项目语义冠以的感知嵌入:在这里插入图片描述
以U-I编码器为例,传播过程是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值