禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
介绍
偏相关分析是一种统计方法,用于在控制一个或多个其他变量的影响下,分析两个变量之间的相关性。当研究者想要了解两个变量之间的内在联系,但又担心其他变量可能对这种联系产生影响时,就会使用偏相关分析。例如,在研究身高与肺活量之间的关系时,如果身高和肺活量都与体重相关,那么直接计算身高和肺活量之间的相关系数可能会受到体重的影响,这时就需要使用偏相关分析来剔除体重的影响,从而更准确地评估身高和肺活量之间的关系。
在代谢物和临床指标的研究中,偏相关分析可以用来探究特定代谢物与疾病状态或临床指标之间的关联,同时控制其他可能影响这种关联的变量。例如,在2型糖尿病的研究中,可以通过偏相关分析来评估血清或粪便中的特定代谢物与糖尿病相关指标之间的关系,同时控制诸如年龄、性别、BMI等潜在的混杂因素。这有助于识别与疾病发展或进程有密切联系的代谢物,为疾病机制的深入理解和潜在生物标志物的发现提供重要信息。
本教程将控制Gender,Age和BMI等混淆因素