介绍
主成分分析(PCA)是一种统计技术,用于简化数据集的复杂性,同时保留数据中的主要变异性。在PCA中,原始变量被转换为不相关的新变量,称为主成分(PCs)。这些主成分按照方差递减的顺序排列。通常,前几个主成分就能够解释大部分的数据变异性。
PCA的结果通常通过两种类型的图表来展示:score图和loading图。
- PCA的score图(得分图):
- Score图展示了样本在主成分空间中的分布情况。
- 每个点代表一个样本,点的位置由其在各个主成分上的得分决定。
- 第一主成分和第二主成分通常用于二维score图,以便于可视化。
- Score图可以帮助识别样本之间的相似性和差异性,以及可能的样本分组或异常值。
- 通过score图,可以观察到样本在主成分上的投影,从而了解它们之间的相对位置和距离。
- PCA的loading图(载荷图):
- Loa