R语言中如何进行PCA分析?利用ggplot和prcomp绘制基因表达量分析图

学习笔记的主要内容是在R语言中利用ggplot2进行PCA分析和绘图,包括简单分析与操作流程,对比不同方式得到的结果差异,提供脚本代码供练习.

PCA分析的原理

在处理基因差异表达数据时,有时候需要分析其中因素的影响最大,判断结果的关系,这个时候可以用PCA分析法,之前发过一篇PCA分析的简介和数学原理解析,如果有兴趣点击这里查看,今天的笔记主要围绕实际操作过程进行分享。笔者学习时参考易汉博的教程,感觉这个教程挺好的,推荐给大家,也可以在学习过程中一起交流。

PCA分析示例

创建演示数据

count <- 100 #设置变量个数为100
Ge_1a <- rnorm(count,4,0.6) #生成100个服从均值为4标准差为0.6正态分布的数字
Ge_1b <- rnorm(count,19,0.4)
gro_a <- rep('a',count) #生成100个a,代表a组
gro_b <- rep('b',count)

演示数据为Ge_1的表达量(每个基因包括两组类型的值各100个,且两个组的表达量有差异),接下来创建根据数据创建矩阵,设置样本的名称标签,添加新列R,并生成一个表格输出基因在200个样本中的表达量,每一行为一个样品,每一列为基因的表达值。

c_data <- data.frame(Ge_1=c(Ge_1a,Ge_1b),
                     Group=c(gro_a,gro_b))
label <- c(paste0(gro_a,1:count),paste0(gro_b,1:count))
row.names(c_data) <- label

c_data$R <- rep(0,count*2)
kable(headTail(c_data),booktabs=TRUE,
      caption="Expr Profile For Ge_1 in 200 samples")

生成了200行3列的表格数据,结果如下:

Table: Expr Profile For Ge_1 in 200 samples
|     |Ge_1  |Group |R   |
|:----|:-----|:-----|:---|
|a1   |4.77  |a     |0   |
|a2   |4.13  |a     |0   |
|a3   |4.15  |a     |0   |
|a4   |4.04  |a     |0   |
|...  |...   |NA    |... |
|b97  |18.93 |b     |0   |
|b98  |18.06 |b     |0   |
|b99  |18.74 |b     |0   |
|b100 |19.52 |b     |0   |

加载R包

library(knitr)
library(psych)
library(reshape2)
library(ggplot2)
library(ggbeeswarm)
library(scatterplot3d)
library(useful)
library(ggfortify)

需要加载上述R包,如果没有请先安装后载入R包。

绘制图像

p <- ggplot(c_data,aes(Ge_1,R)) + geom_quasirandom(
  aes(color=factor(Group))) +theme(legend.position = c(0.5,0.8)) +
  theme(legend.title = element_blank()) +
  scale_fill_discrete(name="Group") +
  theme(axis.line.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank(),
        axis.title.y=element_blank()) +
  ylim(-0.5,5) + xlim(0,25)
p 

利用ggplot函数进行绘图,发现200个样本在Ge1基因表达量上分为了两类(原因是刚刚生成数据时分成了两个不同类型的组,表达量存在差异)

添加一个基因

刚刚是只有Ge1的情况,接下来再创建一个Ge_2(方法和刚刚类似),看看两个基因时情况会发生什么变化?
创建一组均值为6标准差为0.3的正态分布随机数据,并设置行名构建矩阵,输出表达矩阵。需要注意的是:Ge_2的表达量保持稳定(a组和b组的表达水平相当),不像Ge_1存在表达量差异。

> count <- 100
> Ge_2a <- rnorm(count,6,0.3)
> Ge_2b <- rnorm(count,6,0.3)
> c2_data <- data.frame(Ge_1=c(Ge_1a,Ge_1b),Ge_2=c(Ge_2a,Ge_2b),
+                       Group=c(gro_a,gro_b))
> row.names(c2_data) <- label
> kable(headTail(c2_data),booktabs=T,
+                caption="Expression for Ge_1 and Ge_2 in 200 samples")

Table: Expression for Ge_1 and Ge_2 in 200 samples
|     |Ge_1  |Ge_2 |Group |
|:----|:-----|:----|:-----|
|a1   |4.77  |5.71 |a     |
|a2   |4.13  |5.65 |a     |
|a3   |4.15  |6.38 |a     |
|a4   |4.04  |5.88 |a     |
|...  |...   |...  |NA    |
|b97  |18.93 |6.06 |b     |
|b98  |18.06 |6.29 |b     |
|b99  |18.74 |5.78 |b     |
|b100 |19.52 |5.87 |b     |

利用ggplot函数作图,数据为c2data,此时能显示出Ge1Ge2的分布情况,可以看出在Ge_1(x轴)上分成了两类,而Ge_2上分类趋势很小(因为Ge_2本身就没什么差异分组)

p <- ggplot(c2_data,aes(Ge_1,Ge_2)) +
  geom_point(aes(color=factor(Group))) +
  theme(legend.position = c(0.5,0.8)) +
  theme(legend.title = element_blank()) +
  ylim(0,10)+xlim(0,25)
p

再添加一个基因

刚刚是两个基因,现在再加一个Ge_3,这个基因的表达量差异设置的更大一些,设置该基因分成两个组,而且每个组的表达量也存在两种类型,所以这个基因对样本分类的作用更大。

> count <- 100
> Ge_3a <- c(rnorm(count/2,6,0.4),rnorm(count/2,14,0.3))
> Ge_3b <- c(rnorm(count/2,14,0.3),rnorm(count/2,4,0.4))
> data_3 <- data.frame(Ge_1=c(Ge_1a,Ge_1b),
+                      Ge_2=c(Ge_2a,Ge_2b),
+                      Ge_3=c(Ge_3a,Ge_3b),
+                      Group=c(gro_a,gro_b))
> data_3 <- as.data.frame(data_3)
> data_3$Group <- as.factor(data_3$Group)
> row.names(data_3) <- label
> 
> kable(headTail(data_3),booktabs=T,caption = "Expression 3 Genes in 200 samples")


Table: Expression 3 Genes in 200 samples
|     |Ge_1  |Ge_2 |Ge_3 |Group |
|:----|:-----|:----|:----|:-----|
|a1   |4.77  |5.71 |5.61 |a     |
|a2   |4.13  |5.65 |6.38 |a     |
|a3   |4.15  |6.38 |6.47 |a     |
|a4   |4.04  |5.88 |5.82 |a     |
|...  |...   |...  |...  |NA    |
|b97  |18.93 |6.06 |3.57 |b     |
|b98  |18.06 |6.29 |4.37 |b     |
|b99  |18.74 |5.78 |4.18 |b     |
|b100 |19.52 |5.87 |4.82 |b     |

生成一组颜色变量,用于区分不同类别。每个数据向底面做垂直投影,可以看出在x轴方向(Ge_1)和z轴(Ge_3)上投影时在不同位置分成两类,而在y轴(Ge_2)上投影位于同一区域,所以可以看出Ge_2对样本分类的贡献度最小。

colorl <- c("#E19F90", "#96B4E9")
colors <- colorl[as.numeric(data_3$Group)]
scatterplot3d(data_3[,1:3],color=colors,xlim=c(0,24),
              ylim=c(0,24),zlim=c(0,24),type="h",
              angle=45,pch=16)
legend("top",legend=levels(data_3$Group),col=colorl,
       pch=16,xpd=T,horiz=T)

通过上面的演示,已经基本了解PCA的作用了,通过PCA分析能将不同基因在不同样本中的表达量分成几类,接下来,用简单的例子来演示流程。

PCA的实现流程

使用上面创建的data_3数据来进行后续操作。首先生成表达矩阵,包含3个基因在200个样本中的表达情况。

> kable(headTail(data_3),booktabs=T,caption = "Expression 3Gene in 200 samples")
Table: Expression 3Gene in 200 samples
|     |Ge_1  |Ge_2 |Ge_3 |Group |
|:----|:-----|:----|:----|:-----|
|a1   |4.77  |5.71 |5.61 |a     |
|a2   |4.13  |5.65 |6.38 |a     |
|a3   |4.15  |6.38 |6.47 |a     |
|a4   |4.04  |5.88 |5.82 |a     |
|...  |...   |...  |...  |NA    |
|b97  |18.93 |6.06 |3.57 |b     |
|b98  |18.06 |6.29 |4.37 |b     |
|b99  |18.74 |5.78 |4.18 |b     |
|b100 |19.52 |5.87 |4.82 |b     |
# 对数据进行标准化处理
> data_3_cs <- scale(data_3[,1:3],center = T,scale = T)
> kable(headTail(data_3_cs),booktabs=T,caption = "norm Expression 3 gene in 200 samples")

上面的代码是对数据进行标准化和中心化处理(使数据的差异变化幅度在同一水平),将数据转化为均值为0且标准差为1的新数据集。

Table: norm Expression 3 gene in 200 samples

|     |Ge_1  |Ge_2  |Ge_3  |
|:----|:-----|:-----|:-----|
|a1   |-0.89 |-1    |-0.87 |
|a2   |-0.98 |-1.22 |-0.7  |
|a3   |-0.97 |1.41  |-0.68 |
|a4   |-0.99 |-0.37 |-0.82 |
|...  |...   |...   |...   |
|b97  |0.99  |0.25  |-1.32 |
|b98  |0.88  |1.08  |-1.14 |
|b99  |0.97  |-0.73 |-1.18 |
|b100 |1.07  |-0.44 |-1.04 |
> data_3_cs_cov <- cov(data_3_cs)
> kable(data_3_cs_cov,booktabs=T,
+       caption = "cov for 3 gene in 200 samples")

上面的代码生成协方差矩阵,计算3个基因在200个样本中表达数据的协方差。

Table: cov for 3 gene in 200 samples

|     |       Ge_1|       Ge_2|       Ge_3|
|:----|----------:|----------:|----------:|
|Ge_1 |  1.0000000| -0.0808226| -0.1181946|
|Ge_2 | -0.0808226|  1.0000000| -0.0106916|
|Ge_3 | -0.1181946| -0.0106916|  1.0000000|
> data_3_cs_cov_e <- eigen(data_3_cs_cov)
#求解特征值和特征向量
> data_3_cs_cov_e$values #特征值
> [1] 1.1383477 1.0099558 0.8516964
> data_3_cs_cov_e$vectors #特征向量
>       [,1]        [,2]       [,3]
> [1,]  0.7189945  0.02734216 -0.6944778
> [2,] -0.3748044 -0.82622441 -0.4205650
> [3,] -0.5852936  0.56267720 -0.5838028

上面的代码得到特征值和特征变量,下面的代码用于产生新矩阵。

> pc_select <- 3
> label <- paste0("PC",c(1:pc_select))
> data_3_n <- data_3_cs %*% data_3_cs_cov_e$vectors[,1:pc_select] #%*%表示矩阵相乘
> colnames(data_3_n) <- label
> kable(headTail(data_3_n),booktabs=T,
+       caption = "PCA gene matrix for 3 gene in 200 samples")


Table: PCA gene matrix for 3 gene in 200 samples

|     |PC1   |PC2   |PC3   |
|:----|:-----|:-----|:-----|
|a1   |0.24  |0.31  |1.55  |
|a2   |0.16  |0.59  |1.6   |
|a3   |-0.83 |-1.57 |0.48  |
|a4   |-0.09 |-0.18 |1.32  |
|...  |...   |...   |...   |
|b97  |1.39  |-0.92 |-0.02 |
|b98  |0.89  |-1.51 |-0.4  |
|b99  |1.66  |-0.03 |0.33  |
|b100 |1.54  |-0.19 |0.05  |

接下来,比较两种方式对样本的聚类差异情况,设置工作区同时输出两个图,并使用scatterplot3d进行绘图。

colorl <- c("#E38F92","#97B6E1")
colors <- colorl[as.numeric(data_3$Group)]

par(mfrow=c(1,2)) #图片输出区为一行两图的布局

scatterplot3d(data_3[,1:3],color = colors,
              angle=45,pch=16,main="before data")

# 生成图例legend("top",legend = levels(data_3$Group),col=colorl,pch=16,xpd=T,horiz = T)
scatterplot3d(data_3_n,color=colors,angle = 45,pch=16,
              main="after data")


通过对比上图,可以发现两种数据处理方式形成的样品分组情况不同,在处理后数据右图中,样本的分散程度更大,笔者的理解是其变化特征显示的更广泛,相比左图能够读取更多信息,处理后效果更好(可能是因为此时变量间非线性相关)。

利用prcomp进行PCA分析

pca_data_3 <- prcomp(data_3[,1:3],center=T,scale=T)
str(pca_data_3)

上面的代码对data_3数据进行处理,得到新数据,接着查看一下pca_data_3的数据信息摘要。

List of 5
 $ sdev    : num [1:3] 1.067 1.005 0.923
 $ rotation: num [1:3, 1:3] -0.719 0.3748 0.5853 0.0273 -0.8262 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:3] "Ge_1" "Ge_2" "Ge_3"
  .. ..$ : chr [1:3] "PC1" "PC2" "PC3"
 $ center  : Named num [1:3] 11.47 5.99 9.55
  ..- attr(*, "names")= chr [1:3] "Ge_1" "Ge_2" "Ge_3"
 $ scale   : Named num [1:3] 7.52 0.277 4.548
  ..- attr(*, "names")= chr [1:3] "Ge_1" "Ge_2" "Ge_3"
 $ x       : num [1:200, 1:3] -0.2399 -0.1632 0.833 0.0905 0.3406 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : chr [1:200] "a1" "a2" "a3" "a4" ...
  .. ..$ : chr [1:3] "PC1" "PC2" "PC3"
 - attr(*, "class")= chr "prcomp"

生成新的数据包含五个变量,按照之前的方法对其进行处理。

data_pca_n <- pca_data_3$x
kable(headTail(data_pca_n),booktabs=T,
      caption = "PCA gene matrix")

得到prcomp方式的基因表达矩阵,此时存在三个主成分(PC1、2、3)。

Table: PCA gene matrix
|     |PC1   |PC2   |PC3   |
|:----|:-----|:-----|:-----|
|a1   |-0.24 |0.31  |1.55  |
|a2   |-0.16 |0.59  |1.6   |
|a3   |0.83  |-1.57 |0.48  |
|a4   |0.09  |-0.18 |1.32  |
|...  |...   |...   |...   |
|b97  |-1.39 |-0.92 |-0.02 |
|b98  |-0.89 |-1.51 |-0.4  |
|b99  |-1.66 |-0.03 |0.33  |
|b100 |-1.54 |-0.19 |0.05  |
# 查看特征向量
> pca_data_3$rotation
            PC1         PC2        PC3
Ge_1 -0.7189945  0.02734216 -0.6944778
Ge_2  0.3748044 -0.82622441 -0.4205650
Ge_3  0.5852936  0.56267720 -0.5838028

接下来,比较两种方式实现PCA分析的结果差异,左图是手动方式,右图是利用prcomp方式,可以看出两种结果具有差异性。

scatterplot3d(data_3_n,color=colors,angle=45,pch=16,
              main="PCA by steps")
scatterplot3d(data_pca_n,color=colors,angle=45,pch=16,
              main="PCA by prcomp")

创建PCA计算函数

在R语言中自定义一个函数ct_PCA,用于计算处理PCA数据(参数设置对原始数据进行标准化和中心化)

ct_PCA <- function(data,center=T,scale=T){
  data_norm <- scale(data, center=center, scale=scale)
  data_norm_cov <- crossprod(as.matrix(data_norm)) / (nrow(data_norm)-1)
  data_eigen <- eigen(data_norm_cov)

  rotation <- data_eigen$vectors
  label <- paste0('PC', c(1:ncol(rotation)))
  colnames(rotation) <- label
  sdev <- sqrt(data_eigen$values)
  data_new <- data_norm %*% rotation
  colnames(data_new) <- label
  ct_pca <- list('rotation'=rotation, 'x'=data_new, 'sdev'=sdev)
  return(ct_pca)
}

标准化scale操作是指将数据的差异程度相对化,消除固有差异幅度的影响,从同一衡量标准下判断数据的差异性,接下来,分别演示不经过标准化处理和进行标准化处理的结果。

data_pca_noscale_step <- ct_PCA(data_3[,1:3],center=T,scale = F)
#只中心化,不标准化
data_pca_noscale_step$rotation #查看特征向量
              PC1          PC2          PC3
[1,]  0.993858995 -0.110611181 -0.003076602
[2,] -0.002918535  0.001590917 -0.999994476
[3,] -0.110615464 -0.993862483 -0.001258325
data_pca_noscale_pc <- data_pca_noscale_step$x

利用刚才生成的四种数据,生成四个不同类型的结果图:

par(mfrow=c(2,2)) #设置输出区为2行2列排版,同时输出4副图
scatterplot3d(data_3[,c(1,3,2)],color=colors,
              angle=45,pch=16,main="ori plot")
scatterplot3d(data_pca_noscale_pc,color=colors,
              angle=45,pch=16,main="PCA noscale")
scatterplot3d(data_3_cs[,c(1,3,2)],color=colors,
              angle=45,pch=16,main="ori plot(scale)")
scatterplot3d(data_3_n,color=colors,
              angle=45,pch=16,main="PCA scale")

依次生成4副图,可以看出上面两张图(没有scale标准化)的分布比较秘籍,而经过scale处理之后数据的分散程度更高(下面两张图),说明标准化处理后数据的相对变化幅度信息被保留,差异细节更清晰,这也是PCA分析的目的所在。

本文中所有代码已整理打包,下载链接:
https://down.jewin.love/?f=/Rscript/PCA.R
参考资料:http://www.ehbio.com

本文由mdnice多平台发布

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 要使用 PCA 进行数据降维后,可以使用 Matplotlib 库的 scatter 函数进行二维散点绘制。下面是一个简单的 Python 代码示例: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA # 生成随机数据 np.random.seed(42) X = np.random.rand(50, 2) # 使用 PCA 进行数据降维 pca = PCA(n_components=1) X_pca = pca.fit_transform(X) # 绘制二维散点 plt.scatter(X[:, 0], X[:, 1]) plt.show() # 绘制降维后的一维散点 plt.scatter(X_pca[:, 0], np.zeros_like(X_pca[:, 0])) plt.show() ``` 在这个示例,我们生成了 50 个二维随机样本,然后使用 PCA数据降到了一维,最后分别绘制了二维散点和降维后的一维散点。你可以根据自己的需求修改代码数据和参数,然后运行并进行调整。 ### 回答2: PCA(Principal Component Analysis)是一种常用的降维算法,用于对高维数据进行可视化和数据压缩。在Python,有多种库可以用于实现PCA,常用的有numpy、sklearn和matplotlib。 首先,我们需要导入相关的库: import numpy as np from sklearn.decomposition import PCA import matplotlib.pyplot as plt 接下来,我们可以通过以下步骤使用PCA进行降维和作: 1. 准备数据:首先,我们需要准备一个高维数据集,可以是一个矩阵。假设我们有一个m×n的数据集,其m为样本数,n为特征数。可以使用numpy创建一个随机的数据集: data = np.random.rand(m, n) 2. 数据标准化:由于PCA是一种以协方差矩阵为基础的方法,所以在进行PCA之前,需要对数据进行标准化。可以使用numpy的库函数进行标准化操作: data_std = (data - np.mean(data, axis=0)) / np.std(data, axis=0) 3. 使用PCA进行降维:接下来,我们可以使用sklearnPCA类来进行降维。可以通过设置降维后的维度数来控制数据的维度: pca = PCA(n_components=k) # 设置降维后的维度数k data_pca = pca.fit_transform(data_std) 4. 作:最后,我们可以使用matplotlib库来绘制降维后的数据的散点。可以使用plt.scatter函数来绘制: plt.scatter(data_pca[:, 0], data_pca[:, 1]) # 绘制前两个主成分的散点 plt.xlabel('Principal Component 1') plt.ylabel('Principal Component 2') plt.show() 通过以上步骤,我们可以实现使用Python进行PCA降维和作。根据需要,可以调整降维后的维度数和绘制形样式。 ### 回答3: PCAPrincipal Component Analysis,主成分分析)是一种常用的降维技术,可以对高维数据进行可视化。在Python,我们可以使用scikit-learn库的PCA模块来进行PCA。 首先,我们需要导入必要的库和数据集。假设我们有一个包含n个样本和m个特征的数据集,可以使用以下代码导入和处理数据集: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA data = np.loadtxt('data.txt') # 导入数据集,假设数据已经按照样本-特征的形式存储在data.txt文件 # 对数据进行标准化 data_std = (data - np.mean(data, axis=0)) / np.std(data, axis=0) ``` 接下来,我们可以使用PCA模块对数据进行降维。通过设置n_components参数来指定降维后的维度。例如,如果我们希望将数据降至2维,则可以将n_components设置为2: ```python pca = PCA(n_components=2) data_pca = pca.fit_transform(data_std) ``` 最后,我们可以使用matplotlib库对降维后的数据进行可视化。通过绘制散点,可以展示数据的相关信息和聚类情况: ```python plt.scatter(data_pca[:, 0], data_pca[:, 1]) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('PCA Visualization') plt.show() ``` 以上就是使用Python进行PCA的简单示例。我们可以根据实际需求调整参数和绘方式,以便更好地展示数据的特征和结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信分析笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值