【02】LLaMA-Factory微调大模型——LLaMA-Factory搭建

为了构建法律领域的垂直应用大模型,记录使用LLaMA-Factory微调大模型的过程,以期UU们可以复刻与应用。上文【01】LLaMA-Factory微调大模型——基础环境配置完成了初步的底层配置,本文则进入LLaMA-Factory搭建过程。

一、环境激活与工具安装

首先激活前文所配置好的LLM环境

conda activate LLM

安装Git,Git是一种版本控制系统,后文将使用Git获取框架及多个模型的代码

sudo apt install git

二、获取项目代码

安装 LLaMA Factory,首先从GitHub仓库中获取该项目代码

LLaMA-Factory/README_zh.md at main · hiyouga/LLaMA-Factory · GitHubicon-default.png?t=N7T8https://github.com/hiyouga/LLaMA-Factory/blob/main/README_zh.md使用如下命令获取

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git

获取成功后进入 LLaMA Factory文件夹

使用如下命令安装依赖,使用国科大pip源进行加速

pip install -e ".[torch,metrics]" -i https://pypi.mirrors.ustc.edu.cn/simple

可选的额外依赖项:torch、torch-npu、metrics、deepspeed、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、qwen、modelscope、quality

成功安装依赖如上图所示,如在安装的过程中遇到包冲突时,可使用以下命令进行解决

 pip install --no-deps -e

三、网页端启动

 使用LLaMA Board 可视化微调(由 Gradio 驱动)。Gradio是一个用于构建快速原型的开源库,可以创建界面来展示机器学习模型。用户可以直接在浏览器中与模型进行交互。使用如下命令进行创建。

llamafactory-cli webui

 运行成功后,在7860端口创建了前端页面,可通过浏览器进行访问

小结

至此LLaMA-Factory框架成功在本机完成了搭建,下文【03】LLaMA-Factory微调大模型——多模型部署将部署多种主流的大模型,为后续的微调模型提供选择。欢迎您持续关注,如果本文对您有所帮助,感谢您一键三连,多多支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

比伯476

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值