变量分离方程

本篇笔记的内容来源
常微分方程(第四版) (王高雄,周之铭,朱思铭,王寿松) 高等教育出版社


 形如

d y d x = f ( x ) φ ( y ) (1) \frac{\mathrm{d}y}{\mathrm{d}x}=f(x)\varphi(y)\tag{1} dxdy=f(x)φ(y)(1)

的方程,称为变量分离方程,这里 f ( x ) , φ ( y ) f(x),\varphi(y) f(x),φ(y) 分别是 x , y x,y x,y 的连续函数.

 如果 φ ( x ) ≠ 0 \varphi(x)\neq0 φ(x)=0 ,我们可以将其改写为

d y φ ( y ) = f ( x ) d x (2) \frac{\mathrm{d}y}{\varphi(y)}=f(x)\mathrm{d}x\tag{2} φ(y)dy=f(x)dx(2)

这样变量就"分离"开了,然后两边积分,得

∫ d y φ ( y ) = ∫ f ( x ) d x + c (3) \int\frac{\mathrm{d}y}{\varphi(y)}=\int f(x)\mathrm{d}x+c\tag{3} φ(y)dy=f(x)dx+c(3)

常数 c c c 的取值必须保证 ( 3 ) (3) (3) 有意义

( 2 ) (2) (2) 式不适合 φ ( y ) = 0 \varphi(y)=0 φ(y)=0 . 但如果存在 y 0 y_0 y0 使得 φ ( y 0 ) = 0 \varphi(y_0)=0 φ(y0)=0 ,则直接验证知 y = y 0 y=y_0 y=y0 也是 ( 1 ) (1) (1) 的解. 因此,当 y = y 0 y=y_0 y=y0 不包括在方程的通解 ( 3 ) (3) (3) 中时,必须补上特解 y = y 0 y=y_0 y=y0 .

例1

求解方程 d y d x = − x y \frac{\mathrm{d}y}{\mathrm{d}x}=-\frac{x}{y} dxdy=yx .

 方程可变量分离为

y d y = − x d x + c y\mathrm{d}y=-x\mathrm{d}x+c ydy=xdx+c

两边积分得

y 2 2 = − x 2 2 + c \frac{y^2}{2}=-\frac{x^2}{2}+c 2y2=2x2+c

即得通解

y 2 + x 2 = c , c 为任意常数 y^2+x^2=c,c为任意常数 y2+x2=c,c为任意常数

例2

求解人口增长的Logistic模型

d N d t = r ( 1 − N N m ) N , N ( t 0 ) = N 0 , N ( t ) ⩾ 0 \frac{\mathrm{d}N}{\mathrm{d}t}=r\bigg(1-\frac{N}{N_m}\bigg)N,N(t_0)=N_0,N(t)\geqslant0 dtdN=r(1NmN)N,N(t0)=N0,N(t)0

变量分离

r d t = N m d N ( N m − N ) N = d N N + d N N m − N r\mathrm{d}t=\frac{N_m\mathrm{d}N}{(N_m-N)N}= \frac{\mathrm{d}N}{N}+\frac{\mathrm{d}N}{N_m-N} rdt=(NmN)NNmdN=NdN+NmNdN

两边积分

r t + c ‾ = ln ⁡ N − ln ⁡ ( N m − N ) rt+\overline{c}=\ln N-\ln(N_m-N) rt+c=lnNln(NmN)

化简

e − ( r t + c ‾ ) = N m N − 1 e^{-(rt+\overline{c})}=\frac{N_m}{N}-1 e(rt+c)=NNm1

解得

N = N m 1 + c e − r t N=\frac{N_m}{1+ce^{-rt}} N=1+certNm

其中 c = e − c ‾ c=e^{-\overline{c}} c=ec . 将初值条件代入,得

c e − r t 0 = N m N − 1 ce^{-rt_0}=\frac{N_m}{N}-1 cert0=NNm1

最后得解

N = N m 1 + ( N m N 0 − 1 ) e − r ( t − t 0 ) N=\frac{N_m}{1+(\frac{N_m}{N_0}-1)e^{-r(t-t_0)}} N=1+(N0Nm1)er(tt0)Nm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值