本篇笔记的内容来源
常微分方程(第四版) (王高雄,周之铭,朱思铭,王寿松) 高等教育出版社
形如
d y d x = f ( x ) φ ( y ) (1) \frac{\mathrm{d}y}{\mathrm{d}x}=f(x)\varphi(y)\tag{1} dxdy=f(x)φ(y)(1)
的方程,称为变量分离方程,这里 f ( x ) , φ ( y ) f(x),\varphi(y) f(x),φ(y) 分别是 x , y x,y x,y 的连续函数.
如果 φ ( x ) ≠ 0 \varphi(x)\neq0 φ(x)=0 ,我们可以将其改写为
d y φ ( y ) = f ( x ) d x (2) \frac{\mathrm{d}y}{\varphi(y)}=f(x)\mathrm{d}x\tag{2} φ(y)dy=f(x)dx(2)
这样变量就"分离"开了,然后两边积分,得
∫ d y φ ( y ) = ∫ f ( x ) d x + c (3) \int\frac{\mathrm{d}y}{\varphi(y)}=\int f(x)\mathrm{d}x+c\tag{3} ∫φ(y)dy=∫f(x)dx+c(3)
常数 c c c 的取值必须保证 ( 3 ) (3) (3) 有意义
( 2 ) (2) (2) 式不适合 φ ( y ) = 0 \varphi(y)=0 φ(y)=0 . 但如果存在 y 0 y_0 y0 使得 φ ( y 0 ) = 0 \varphi(y_0)=0 φ(y0)=0 ,则直接验证知 y = y 0 y=y_0 y=y0 也是 ( 1 ) (1) (1) 的解. 因此,当 y = y 0 y=y_0 y=y0 不包括在方程的通解 ( 3 ) (3) (3) 中时,必须补上特解 y = y 0 y=y_0 y=y0 .
例1
求解方程 d y d x = − x y \frac{\mathrm{d}y}{\mathrm{d}x}=-\frac{x}{y} dxdy=−yx .
方程可变量分离为
y d y = − x d x + c y\mathrm{d}y=-x\mathrm{d}x+c ydy=−xdx+c
两边积分得
y 2 2 = − x 2 2 + c \frac{y^2}{2}=-\frac{x^2}{2}+c 2y2=−2x2+c
即得通解
y 2 + x 2 = c , c 为任意常数 y^2+x^2=c,c为任意常数 y2+x2=c,c为任意常数
例2
求解人口增长的Logistic模型
d N d t = r ( 1 − N N m ) N , N ( t 0 ) = N 0 , N ( t ) ⩾ 0 \frac{\mathrm{d}N}{\mathrm{d}t}=r\bigg(1-\frac{N}{N_m}\bigg)N,N(t_0)=N_0,N(t)\geqslant0 dtdN=r(1−NmN)N,N(t0)=N0,N(t)⩾0
变量分离
r d t = N m d N ( N m − N ) N = d N N + d N N m − N r\mathrm{d}t=\frac{N_m\mathrm{d}N}{(N_m-N)N}= \frac{\mathrm{d}N}{N}+\frac{\mathrm{d}N}{N_m-N} rdt=(Nm−N)NNmdN=NdN+Nm−NdN
两边积分
r t + c ‾ = ln N − ln ( N m − N ) rt+\overline{c}=\ln N-\ln(N_m-N) rt+c=lnN−ln(Nm−N)
化简
e − ( r t + c ‾ ) = N m N − 1 e^{-(rt+\overline{c})}=\frac{N_m}{N}-1 e−(rt+c)=NNm−1
解得
N = N m 1 + c e − r t N=\frac{N_m}{1+ce^{-rt}} N=1+ce−rtNm
其中 c = e − c ‾ c=e^{-\overline{c}} c=e−c . 将初值条件代入,得
c e − r t 0 = N m N − 1 ce^{-rt_0}=\frac{N_m}{N}-1 ce−rt0=NNm−1
最后得解
N = N m 1 + ( N m N 0 − 1 ) e − r ( t − t 0 ) N=\frac{N_m}{1+(\frac{N_m}{N_0}-1)e^{-r(t-t_0)}} N=1+(N0Nm−1)e−r(t−t0)Nm