随机变量变换

本篇笔记内容来源
概率论与数理统计教程(第三版) 茆诗松 高等教育出版社
数理统计学导论(原书第7版) 机械工业出版社


一元

X X X 是具有 p d f   f X ( x ) pdf\ f_X(x) pdf fX(x) 以及支集 S X \mathcal{S}_X SX 的连续随机变量. 设 Y = g ( X ) Y=g(X) Y=g(X) ,其中 g ( x ) g(x) g(x) 表示支集 S X \mathcal{S}_X SX 上一对一的可微函数. 则 Y Y Y p d f pdf pdf

f Y ( y ) = f X ( g − 1 ( y ) ) ∣ d d y g − 1 ( y ) ∣ f_Y(y)=f_X(g^{-1}(y)) \left| \frac{\mathrm{d}}{\mathrm{d}y}g^{-1}(y) \right| fY(y)=fX(g1(y)) dydg1(y)

证明

因为 g ( x ) g(x) g(x) 是一对一且连续的,所以它一定是严格单调的.

 假定 g ( x ) g(x) g(x) 是严格单调递增的,则其反函数也是单调递增的

F Y ( y ) = P [ Y ⩽ y ] = P [ g ( X ) ⩽ y ] = P [ X ⩽ g − 1 ( y ) ] = F X ( g − 1 ( y ) ) F_Y(y)=P[Y\leqslant y]=P[g(X)\leqslant y]=P[X\leqslant g^{-1}(y)] =F_X(g^{-1}(y)) FY(y)=P[Yy]=P[g(X)y]=P[Xg1(y)]=FX(g1(y))

所以 Y Y Y p d f pdf pdf

f Y ( y ) = d d y F Y ( y ) = d d y F X ( g − 1 ( y ) ) = f X ( g − 1 ( y ) ) d d y g − 1 ( y ) f_Y(y)=\frac{\mathrm{d}}{\mathrm{d}y}F_Y(y) =\frac{\mathrm{d}}{\mathrm{d}y}F_X(g^{-1}(y)) =f_X(g^{-1}(y)) \frac{\mathrm{d}}{\mathrm{d}y}g^{-1}(y) fY(y)=dydFY(y)=dydFX(g1(y))=fX(g1(y))dydg1(y)

其中 d d y g − 1 ( y ) > 0 \frac{\mathrm{d}}{\mathrm{d}y}g^{-1}(y)>0 dydg1(y)>0 ,取绝对值不影响结果

g ( x ) g(x) g(x) 严格单调递减的情况也类似,就差个负号

先求 c d f cdf cdf

F Y ( y ) = P [ Y ⩽ y ] = P [ g ( X ) ⩽ y ] = P [ X ⩾ g − 1 ( y ) ] = 1 − F X ( g − 1 ( y ) ) F_Y(y)=P[Y\leqslant y]=P[g(X)\leqslant y]=P[X\geqslant g^{-1}(y)] =1-F_X(g^{-1}(y)) FY(y)=P[Yy]=P[g(X)y]=P[Xg1(y)]=1FX(g1(y))

再求 p d f pdf pdf

f Y ( y ) = d d y F Y ( y ) = d d y [ 1 − F X ( g − 1 ( y ) ) ] = − f X ( g − 1 ( y ) ) d d y g − 1 ( y ) f_Y(y)=\frac{\mathrm{d}}{\mathrm{d}y}F_Y(y) =\frac{\mathrm{d}}{\mathrm{d}y}[1-F_X(g^{-1}(y))] =-f_X(g^{-1}(y)) \frac{\mathrm{d}}{\mathrm{d}y}g^{-1}(y) fY(y)=dydFY(y)=dyd[1FX(g1(y))]=fX(g1(y))dydg1(y)

其中 d d y g − 1 ( y ) < 0 \frac{\mathrm{d}}{\mathrm{d}y}g^{-1}(y)<0 dydg1(y)<0 ,加上负号取绝对值也不影响结果


二元

设二维随机变量 ( X , Y ) (X,Y) (X,Y) 的联合 p d f pdf pdf f ( x , y ) f(x,y) f(x,y) ,如果函数

{ u = g 1 ( x , y ) v = g 2 ( x , y ) \begin{cases} u=g_1(x,y)\\ v=g_2(x,y) \end{cases} {u=g1(x,y)v=g2(x,y)

有连续偏导数,且存在唯一的反函数

{ x = x ( u , v ) y = y ( u , v ) \begin{cases} x=x(u,v)\\ y=y(u,v) \end{cases} {x=x(u,v)y=y(u,v)

其变换的雅可比行列式不为零

J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ ≠ 0 J=\frac{\partial(x,y)}{\partial(u,v)}= \left| \begin{matrix} \frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u}&\frac{\partial y}{\partial v} \end{matrix} \right| \neq0 J=(u,v)(x,y)= uxuyvxvy =0

( U , V ) (U,V) (U,V) 的联合 p d f pdf pdf

f ( u , v ) = p ( x ( u , v ) , y ( u , v ) ) ∣ J ∣ f(u,v)=p(x(u,v),y(u,v))|J| f(u,v)=p(x(u,v),y(u,v))J

这个方法实际上就是二重积分的变量变换法,其证明可参阅数学分析教科书

  • 15
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值