学生定理(t分布的推论)

内容来源
数理统计学导论(原书第7版) 机械工业出版社


学生定理

X 1 , ⋯   , X n X_1,\cdots,X_n X1,,Xn i i d \mathrm{iid} iid (独立同分布)随机变量,它们均服从均值 μ \mu μ 与方差 σ 2 \sigma^2 σ2 的正态分布,定义随机变量

X ‾ = 1 n ∑ i = 1 n X i S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 \overline{X}=\frac{1}{n}\sum^n_{i=1}X_i\\ S^2=\frac{1}{n-1}\sum^n_{i=1}(X_i-\overline{X})^2 X=n1i=1nXiS2=n11i=1n(XiX)2

于是

  1. X ‾ \overline{X} X 服从 N ( μ , σ 2 n ) N(\mu,\frac{\sigma^2}{n}) N(μ,nσ2) 分布.

  2. X ‾ \overline{X} X S 2 S^2 S2 是独立的.

  3. ( n − 1 ) S 2 / σ 2 (n-1)S^2/\sigma^2 (n1)S2/σ2 服从 χ 2 ( n − 1 ) \chi^2(n-1) χ2(n1) 分布.

  4. 随机变量

    T = X ‾ − μ S / n T=\frac{\overline{X}-\mu}{S/\sqrt{n}} T=S/n Xμ

    服从自由度 n − 1 n-1 n1 的学生 t t t 分布.


证明

1

就是正态分布可加性的推广,略

2

X = ( X 1 , ⋯   , X n ) ′ X=(X_1,\cdots,X_n)' X=(X1,,Xn)

X ∼ N n ( μ 1 , σ 2 I ) X\sim N_n(\mu1,\sigma^2I) XNn(μ1,σ2I) ,其中 1 1 1 表示分量全部为 1 1 1 的向量(下面参与矩阵运算的数字也都是对应的 n n n 维向量)

再设

v ′ = ( 1 / n , ⋯   , 1 / n ) Y = ( X 1 − X ‾ , ⋯   , X n − X ‾ ) ′ v'=(1/n,\cdots,1/n)\\ Y=(X_1-\overline{X},\cdots,X_n-\overline{X})' v=(1/n,,1/n)Y=(X1X,,XnX)

得到下述变换

W = [ X ‾ Y ] = [ v ′ I − 1 v ′ ] X W= \left[ \begin{matrix} \overline{X}\\ Y \end{matrix} \right]= \left[ \begin{matrix} v'\\ I-1v' \end{matrix} \right]X W=[XY]=[vI1v]X

因为 W W W X X X 的线性变换,所以 W W W 也服从多元正态分布

W W W n + 1 n+1 n+1 维的)

其均值为

E [ W ] = [ v ′ I − 1 v ′ ] μ 1 = [ μ 0 ] E[W]= \left[ \begin{matrix} v'\\ I-1v' \end{matrix} \right]\mu1= \left[ \begin{matrix} \mu\\ 0 \end{matrix} \right] E[W]=[vI1v]μ1=[μ0]

协方差为

Σ = [ v ′ I − 1 v ′ ] σ 2 I [ v ′ I − 1 v ′ ] = σ 2 [ 1 / n 0 0 I − 1 v ′ ] \Sigma= \left[ \begin{matrix} v'\\ I-1v' \end{matrix} \right] \sigma^2I \left[ \begin{matrix} v'\\ I-1v' \end{matrix} \right] =\sigma^2 \left[ \begin{matrix} 1/n&0\\ 0&I-1v' \end{matrix} \right] Σ=[vI1v]σ2I[vI1v]=σ2[1/n00I1v]

根据多元正态分布的性质, X X X Y Y Y 是独立的

S 2 = ( n − 1 ) − 1 Y ′ Y S^2=(n-1)^{-1}Y'Y S2=(n1)1YY

所以 X X X S 2 S^2 S2 也是独立的

3

构造随机变量

V = ∑ i = 1 n ( X i − μ σ ) 2 V=\sum^n_{i=1}\bigg(\frac{X_i-\mu}{\sigma}\bigg)^2 V=i=1n(σXiμ)2

此和式中每一项都是标准正态分布的平方

即每一项都服从 χ 2 ( 1 ) \chi^2(1) χ2(1) 分布,而且各项相互独立

所以 V ∼ χ 2 ( n ) V\sim\chi^2(n) Vχ2(n) (伽马分布可加性)

然后把 V V V 拆开

V = ∑ i = 1 n ( ( X i − X ‾ ) + ( X ‾ − μ ) σ ) 2 = ∑ i = 1 n ( X i − X ‾ σ ) 2 + 2 ∑ i = 1 n ( ( X i − X ‾ ) ( X ‾ − μ ) σ ) 2 + ∑ i = 1 n ( X ‾ − μ σ ) 2 = ( n − 1 ) S 2 σ 2 + 0 + ( X ‾ − μ σ / n ) 2 \begin{align*} V&=\sum^n_{i=1}\bigg(\frac{(X_i-\overline{X})+(\overline{X}-\mu)}{\sigma}\bigg)^2\\ &=\sum^n_{i=1}\bigg(\frac{X_i-\overline{X}}{\sigma}\bigg)^2 +2\sum^n_{i=1}\bigg(\frac{(X_i-\overline{X})(\overline{X}-\mu)}{\sigma}\bigg)^2 +\sum^n_{i=1}\bigg(\frac{\overline{X}-\mu}{\sigma}\bigg)^2\\ &=\frac{(n-1)S^2}{\sigma^2}+0 +\bigg(\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\bigg)^2 \end{align*} V=i=1n(σ(XiX)+(Xμ))2=i=1n(σXiX)2+2i=1n(σ(XiX)(Xμ))2+i=1n(σXμ)2=σ2(n1)S2+0+(σ/n Xμ)2

最后等式右边两项是独立的,而且第二项是标准正态的平方,服从 χ 2 ( 1 ) \chi^2(1) χ2(1) 分布

然后把可加性反过来用,得到结论 3 3 3

4

(书上这里写了个显然…)

T T T 拆开看就行

一个是

X ‾ − μ σ / n ∼ N ( 0 , 1 ) \frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1) σ/n XμN(0,1)

另一个是

( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1) σ2(n1)S2χ2(n1)

让后再看看 t t t 分布的定义

t ( r ) = N ( 0 , 1 ) χ 2 ( r ) / r t(r)=\frac{N(0,1)}{\sqrt{\chi^2(r)/r}} t(r)=χ2(r)/r N(0,1)

(确实显然)

  • 14
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值