内容来源
数理金融初步(原书第3版)Sheldon M. Ross著 冉启康译 机械工业出版社
布朗运动作为股票或商品价格模型的主要缺陷
-
将股票价格作为一个正态随机变量,则它在理论上可以取负值
-
在布朗运动的模型里,假定无论初始价格为何值,固定时间长度的价格差都具有相同的正态分布
这个假设并不合理
例如,股价一个月从 20 20 20 美元降到 15 15 15 美元(下降 25 % 25\% 25%)的概率,与从 10 10 10 美元降到 5 5 5 美元(下降 50 % 50\% 50%)的概率相同
几何布朗运动
设 X ( t ) , t ⩾ 0 X(t),t\geqslant0 X(t),t⩾0 是一个漂移参数为 μ \mu μ,方差参数为 σ 2 \sigma^2 σ2 的布朗运动过程,又设
S ( t ) = e X ( t ) S(t)=e^{X(t)} S(t)=eX(t)
则称过程 S ( t ) S(t) S(t) 为一个漂移参数为 μ \mu μ,方差参数为 σ 2 \sigma^2 σ2 的几何布朗运动过程
让我联想到对数正态分布
假定股票价格的对数为正态随机变量,确保股票价格不会出现负数
假定间隔相同时间长度的股票价格的比率(而不是差)具有相同的分布
ln ( S ( y + t ) S ( y ) ) ∼ N ( μ t , t σ 2 ) \ln\left(\frac{S(y+t)}{S(y)}\right)\sim N(\mu t,t\sigma^2) ln(S(y)S(y+t))∼N(μt,tσ2)
注
-
当几何布朗运动用来对随时间变化的证券价格建模时,通常称 σ \sigma σ 为波动率参数
-
如果 X X X 是一个正态随机过程
E [ e X ] = exp { E [ X ] + V a r ( X ) / 2 } E[e^{X}]=\exp\{E[X]+Var(X)/2\} E[eX]=exp{E[X]+Var(X)/2}
因此,如果 S ( t ) S(t) S(t) 是一个漂移为 μ \mu μ,波动为 σ \sigma σ 的几何布朗运动,且 S ( 0 ) = s S(0)=s S(0)=s,那么
E [ S ( t ) ] = s e μ t + t σ 2 / 2 = s e ( μ + σ 2 / 2 ) t E[S(t)]=se^{\mu t+t\sigma^2/2}=se^{(\mu+\sigma^2/2)t} E[S(t)]=seμt+tσ2/2=se(μ+σ2/2)t
通常称 μ + σ 2 / 2 \mu+\sigma^2/2 μ+σ2/2 为几何布朗运动的增长率