几何布朗运动

内容来源

数理金融初步(原书第3版)Sheldon M. Ross著 冉启康译 机械工业出版社


布朗运动作为股票或商品价格模型的主要缺陷

  1. 将股票价格作为一个正态随机变量,则它在理论上可以取负值

  2. 在布朗运动的模型里,假定无论初始价格为何值,固定时间长度的价格差都具有相同的正态分布

    这个假设并不合理

    例如,股价一个月从 20 20 20 美元降到 15 15 15 美元(下降 25 % 25\% 25%)的概率,与从 10 10 10 美元降到 5 5 5 美元(下降 50 % 50\% 50%)的概率相同

几何布朗运动

X ( t ) , t ⩾ 0 X(t),t\geqslant0 X(t),t0 是一个漂移参数为 μ \mu μ,方差参数为 σ 2 \sigma^2 σ2 的布朗运动过程,又设

S ( t ) = e X ( t ) S(t)=e^{X(t)} S(t)=eX(t)

则称过程 S ( t ) S(t) S(t) 为一个漂移参数为 μ \mu μ,方差参数为 σ 2 \sigma^2 σ2 的几何布朗运动过程

让我联想到对数正态分布

假定股票价格的对数为正态随机变量,确保股票价格不会出现负数

假定间隔相同时间长度的股票价格的比率(而不是差)具有相同的分布

ln ⁡ ( S ( y + t ) S ( y ) ) ∼ N ( μ t , t σ 2 ) \ln\left(\frac{S(y+t)}{S(y)}\right)\sim N(\mu t,t\sigma^2) ln(S(y)S(y+t))N(μt,tσ2)

  • 当几何布朗运动用来对随时间变化的证券价格建模时,通常称 σ \sigma σ 为波动率参数

  • 如果 X X X 是一个正态随机过程

    E [ e X ] = exp ⁡ { E [ X ] + V a r ( X ) / 2 } E[e^{X}]=\exp\{E[X]+Var(X)/2\} E[eX]=exp{E[X]+Var(X)/2}

    因此,如果 S ( t ) S(t) S(t) 是一个漂移为 μ \mu μ,波动为 σ \sigma σ 的几何布朗运动,且 S ( 0 ) = s S(0)=s S(0)=s,那么

    E [ S ( t ) ] = s e μ t + t σ 2 / 2 = s e ( μ + σ 2 / 2 ) t E[S(t)]=se^{\mu t+t\sigma^2/2}=se^{(\mu+\sigma^2/2)t} E[S(t)]=seμt+tσ2/2=se(μ+σ2/2)t

    通常称 μ + σ 2 / 2 \mu+\sigma^2/2 μ+σ2/2 为几何布朗运动的增长率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值