Revision-Linear Regression
Classfication
The MNIST dataset


train: 训练集还是测试集
The CIFAR-10 dataset

1. Regression VS Classfication
输出概率

1.1 How to map [0,1]

导数: 正态分布

1.2 Sigmoid functions

2. Logistic Regression model

loss function for Binary Classification

Cross-entropy 交叉熵

两个分布中间差异性大小 越大越好
BCE

Mini-Batch loss function for binary classification
分布接近
3. Implementation


Total:

result:

博客围绕回归与分类展开,对比了线性回归和分类,介绍了如何将值映射到[0,1]区间及Sigmoid函数。阐述了逻辑回归模型,包括二元分类的损失函数、交叉熵、BCE及小批量损失函数。最后提及了相关实现内容。

888

被折叠的 条评论
为什么被折叠?



