PyTorch 深度学习之逻辑斯蒂回归Logistic Regression(五)

Revision-Linear Regression

Classfication

The MNIST dataset

train: 训练集还是测试集

The CIFAR-10 dataset

1. Regression VS Classfication

输出概率

1.1 How to map [0,1]

导数: 正态分布

1.2 Sigmoid functions

2. Logistic Regression model

loss function for Binary Classification

Cross-entropy 交叉熵

两个分布中间差异性大小 越大越好

BCE

Mini-Batch loss function for binary classification

分布接近

3. Implementation

Total:

result:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值