概率论第四章复习

概念

1.中心极限定理

对于伯努利分布,n次实验中成功的次数为 S n S_n Sn

P ( α < S n < β ) = P ( α − n p n p ( 1 − p ) < P − n p n p ( 1 − p ) < β − n p n p ( 1 − p ) ) = Φ ( β − n p n p ( 1 − p ) ) − Φ ( α − n p n p ( 1 − p ) ) P(\alpha<S_n<\beta)=P(\frac{\alpha-np}{\sqrt{np(1-p)}}<\frac{P-np}{\sqrt{np(1-p)}}<\frac{\beta-np}{\sqrt{np(1-p)}})=\Phi(\frac{\beta-np}{\sqrt{np(1-p)}})-\Phi(\frac{\alpha-np}{\sqrt{np(1-p)}}) P(α<Sn<β)=P(np(1p) αnp<np(1p) Pnp<np(1p) βnp)=Φ(np(1p) βnp)Φ(np(1p) αnp)

注意到没有下界时后一项值为0,没有上界时,前一项值为1。

2.依概率收敛

记作: ϵ n → P ϵ \epsilon_n\stackrel{P}\to\epsilon ϵnPϵ,一般看是否服从大数律。

马尔可夫大数律

ϵ k \epsilon_k ϵk为一系列随机变量, E ϵ k = μ k E\epsilon_k=\mu_k Eϵk=μk,则 V a r ∑ ϵ k n 2 → 0 ⇒ S n n → P ∑ μ k n \frac{Var\sum\epsilon_k}{n^2}\to0\Rightarrow\frac{S_n}{n}\stackrel{P}\to\frac{\sum\mu_k}{n} n2Varϵk0nSnPnμk
要求k个随机变量绝对值的期望存在,Sn的方差存在。

切比雪夫大数率

ϵ k \epsilon_k ϵk为一系列随机变量, E ϵ k = μ k E\epsilon_k=\mu_k Eϵk=μk,则 ∑ V a r ϵ k n 2 → 0 ⇒ S n n → P ∑ μ k n \frac{\sum Var\epsilon_k}{n^2}\to0\Rightarrow\frac{S_n}{n}\stackrel{P}\to\frac{\sum\mu_k}{n} n2Varϵk0nSnPnμk
切比雪夫大数律是马尔可夫大数律的特殊情况,要求k个随机变量的方差和期望都存在。

辛钦大数率

ϵ k \epsilon_k ϵk为一系列独立同分布随机变量, E ϵ k = μ E\epsilon_k=\mu Eϵk=μ,则 S n n → P μ \frac{S_n}{n}\stackrel{P}\to\mu nSnPμ

3.依分布收敛

又称弱收敛于分布函数,记作 ϵ n → d ϵ \epsilon_n\stackrel{d}\to\epsilon ϵndϵ

一般是看分布函数 F n ( x ) F_n(x) Fn(x)的极限函数是否是分布函数。
分布函数要求:负无穷处为0,正无穷处为1,单调不减,右连续。

题目

1.中心极限定理运用

需要确定伯努利分布的次数和概率,之后直接代入公式,有时候需要转化问题。

例:计算机有120个终端,每个终端有5%的时间在使用,是否使用是独立的,求10个及以上终端在使用的概率。

转化为120次实验,每次概率0.05,成功10次以上的概率。

P ( S n > 10 ) = P ( S n − 120 ⋅ 0.05 120 ⋅ 0.05 ⋅ 0.95 > 10 − 120 ⋅ 0.05 120 ⋅ 0.05 ⋅ 0.95 ) = 1 − Φ ( 10 − 120 ⋅ 0.05 120 ⋅ 0.05 ⋅ 0.95 ) P(S_n>10)=P(\frac{S_n-120\cdot0.05}{\sqrt{120\cdot0.05\cdot0.95}}>\frac{10-120\cdot0.05}{\sqrt{120\cdot0.05\cdot0.95}})=1-\Phi(\frac{10-120\cdot0.05}{\sqrt{120\cdot0.05\cdot0.95}}) P(Sn>10)=P(1200.050.95 Sn1200.05>1200.050.95 101200.05)=1Φ(1200.050.95 101200.05)

例:种子中良种占 1 6 \frac16 61,取6000粒种子,求良种率与 1 6 \frac16 61相差不超过1%的概率

6000次实验,成功率为1/6,要求成功的次数/6000与1/6的差距不超过1%

成功的次数为 S n S_n Sn

P ( ∣ S n 6000 − 1 6 ∣ < 1 % ) = P ( 940 < S n < 1060 ) P(|\frac{S_n}{6000}-\frac16|<1\%)=P(940<S_n<1060) P(6000Sn61<1%)=P(940<Sn<1060)再套公式即可。

例:车间有200台机床,60%的时间开动,每台耗电1KW,求供电多少使得有0.999的概率正常工作。

主要的问题是什么叫正常工作。

正常工作就是供电数大于等于需要的电数。实验200次,每次成功率0.6,总的成功次数即需要的电数为 S n S_n Sn,若供电为 x x xKW,

P ( S n < x ) = P ( S − 200 ⋅ 0.6 200 ⋅ 0.6 ⋅ 0.4 < x − 200 ⋅ 0.6 200 ⋅ 0.6 ⋅ 0.4 ) = Φ ( x − 200 ⋅ 0.6 200 ⋅ 0.6 ⋅ 0.4 ) P(S_n<x)=P(\frac{S-200\cdot0.6}{\sqrt{200\cdot0.6\cdot0.4}}<\frac{x-200\cdot0.6}{\sqrt{200\cdot0.6\cdot0.4}})=\Phi(\frac{x-200\cdot0.6}{\sqrt{200\cdot0.6\cdot0.4}}) P(Sn<x)=P(2000.60.4 S2000.6<2000.60.4 x2000.6)=Φ(2000.60.4 x2000.6)

2.大数律的应用

如果是同分布的一般用辛钦,其他的可以用马尔可夫或者切比雪夫。

例: P ( ϵ k = ln ⁡ k ) = P ( ϵ k = − ln ⁡ k ) = 1 2 P(\epsilon_k=\sqrt{\ln k})=P(\epsilon_k=-\sqrt{\ln k})=\frac12 P(ϵk=lnk )=P(ϵk=lnk )=21,求证 ϵ n → P 0 \frac\epsilon n\stackrel{P}\to0 nϵP0

首先,不是同分布,那就只能用切比雪夫或者马尔可夫。它的意思是分布列一部分是正的,一部分是负的。因此 E ϵ = 0 E\epsilon=0 Eϵ=0,期望是相同的。

首先计算 V a r ϵ k = 1 2 ln ⁡ k + 1 2 ln ⁡ k = ln ⁡ k Var\epsilon_k=\frac12\ln k+\frac12\ln k=\ln k Varϵk=21lnk+21lnk=lnk

显然每一个的方差和期望都存在,因此可以使用切比雪夫大数律, ∑ ln ⁡ k n 2 ≤ ln ⁡ n n \frac{\sum\ln k}{n^2}\le\frac{\ln n}{n} n2lnknlnn收敛到0,则 S n n → P 0 \frac{S_n}n\stackrel{P}\to0 nSnP0

例:伯努利实验中,A出现的概率为p, ϵ k = 1 \epsilon_k=1 ϵk=1表示k次和k+1次出现,其他为0,求证 ϵ \epsilon ϵ服从大数律

A事件是否出现是独立的,但是相邻的 ϵ \epsilon ϵ是不独立的,另外可以得到分布列 P ( ϵ k = 1 ) = p 2 P(\epsilon_k=1)=p^2 P(ϵk=1)=p2, ∣ l − k ∣ > 2 |l-k|>2 lk>2 ϵ l , ϵ k \epsilon_l,\epsilon_k ϵl,ϵk独立。

计算 V a r ϵ Var\epsilon Varϵ得:(后一项只有相邻的才不为0)

V a r ϵ = ∑ V a r ϵ k + 2 ∑ i = 1 n − 1 C o v ( ϵ i , ϵ i + 1 ) Var\epsilon=\sum Var\epsilon_k+2\sum\limits_{i=1}^{n-1} Cov(\epsilon_i,\epsilon_{i+1}) Varϵ=Varϵk+2i=1n1Cov(ϵi,ϵi+1)

根据柯西不等式, C o v ( ϵ i , ϵ i + 1 ) ≤ V a r ϵ i ⋅ V a r ϵ i + 1 = V a r ϵ i Cov(\epsilon_i,\epsilon_{i+1})\le\sqrt{ Var\epsilon_i\cdot Var\epsilon_{i+1}}=Var\epsilon_i Cov(ϵi,ϵi+1)VarϵiVarϵi+1 =Varϵi

最后得到: V a r ϵ = 3 ∑ V a r ϵ k Var\epsilon=3\sum Var\epsilon_k Varϵ=3Varϵk

服从马尔可夫大数律。
其实也是可以使用切比雪夫大数律的。

例: ϵ k \epsilon_k ϵk为[0,1]上均匀分布, η = ϵ 1 ϵ 2 . . . ϵ n n \eta=\sqrt[n]{\epsilon_1\epsilon_2...\epsilon_n} η=nϵ1ϵ2...ϵn ,求证: η → P c \eta\stackrel{P}\to c ηPc

此题乍一看感觉怪怪的,因为不是求和,但是求积,因此取对数即可。

ln ⁡ η = ln ⁡ ϵ 1 + . . . + ln ⁡ ϵ k n \ln\eta=\frac{\ln\epsilon_1+...+\ln\epsilon_k}n lnη=nlnϵ1+...+lnϵk,由于是独立同分布的,用辛钦大数律即可。

计算 E ( ln ⁡ ϵ k ) = ∫ 0 1 ln ⁡ x d x = − 1 E(\ln\epsilon_k)=\int\limits_{0}^{1}\ln xdx=-1 E(lnϵk)=01lnxdx=1

利用辛钦大数律得: 1 n ∑ ln ⁡ ϵ k → − 1 \frac1n\sum\ln\epsilon_k\to-1 n1lnϵk1

η = exp ⁡ ( 1 n ∑ ϵ k ) → 1 e \eta=\exp(\frac1n\sum\epsilon_k)\to\frac1e η=exp(n1ϵk)e1

例: { ϵ k } \{\epsilon_k\} {ϵk}独立同分布, V a r ϵ k < ∞ Var\epsilon_k<\infty Varϵk< E ϵ k = a E\epsilon_k=a Eϵk=a,求证: 2 ∑ k ϵ k n ( n + 1 ) → a \frac{2\sum k\epsilon_k}{n(n+1)}\to a n(n+1)2kϵka

看最后想要证的东西,是 k ϵ k n \frac{k\epsilon_k}n nkϵk,这个的期望为: E k ϵ k n = k a n E\frac{k\epsilon_k}{n}=\frac{ka}n Enkϵk=nka

注意到题目的条件: V a r ϵ k = M Var\epsilon_k=M Varϵk=M

这个的方差为: V a r k ϵ k n = k 2 n 2 M Var\frac{k\epsilon_k}{n}=\frac{k^2}{n^2}M Varnkϵk=n2k2M

代入到切比雪夫大数律中: ∑ V a r k ϵ k n 2 = ∑ ( k n ) 2 n 2 → 0 \frac{\sum Vark\epsilon_k}{n^2}=\frac{\sum(\frac{k}{n})^2}{n^2}\to0 n2Varkϵk=n2(nk)20

因此有: ∑ k ϵ k n 2 → n ( n + 1 ) 2 a n 2 \frac{\sum k\epsilon_k}{n^2}\to\frac{\frac{n(n+1)}{2}a}{n^2} n2kϵkn22n(n+1)a

注意看是最后有个n,如果没有n还不好证。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值