AI智能体扣子(Coze)搭建【自动生成爆款视频】工作流保姆级教学_coze生成视频

大家好,我是海文,AI洞察,AI智能体,AI工作流分享

大家应该在小红书都刷到过这样的爆款认知觉醒的视频吧?

图片

Image

今天我就不和大家讲这次工作流的需求分析了,毕竟大家都知道这类爆款视频的变现方式,出书,教程,训练营等等,我就不多此一举了。

而是讲讲这类视频曾经给我带来的帮助。

这个账号的内容我是在去年十二月的时候刷到的,当时我刚开始做公众号,不会创作内容,也不会写作。

所以当时的我每天不知道写什么,每天就是啥火抄啥,偶尔还用 AI 糊弄一下大家。

但当时我刷到了这个博主的第一条视频时,我红色框出来的那条视频,当时这条视频给了我莫大的鼓励。

视频的大致内容说的是,只选一件事,然后下重注,押上自己所有时间,不顾一切的去做。

这条视频内容质量很好,我推荐各位可以看一看。

这个博主很厉害,当时不到一个月,涨了 10W 粉丝,也是看完它的那条视频那时起,我开始认真学习写作,开始看写作的课程,开始模仿写作的方式。

当时的我,因为没有钱报课程,只能去 PDD 上买 dao 版的来看,看了两遍,然后又看了本写作相关的书籍,并将方法用于实践,一段时间后,我的水平就上来了。

其实我想说,无论你现在在做什么,你都不要因为短期没有效果而陷入情绪内耗,从而开始有逃避的想法。

当你开始心无旁骛,专心致志的去做一件事情,你会发现,其实赛道一点也不拥挤,因为我相信你可以。

好了,励志篇幅不宜过长,开始我们今天的教学内容,跟我一起学下去吧!

工作流分析

整体的流程如下,一共六步。

Image

整体的 Coze 流程如下。

Image

说实话,看着挺复杂的,其实也确实挺复杂的。

保姆级工作流教程,李奶奶不一定能学会

本次的教程说实话比较难,如果看不懂的话,就多看几次,或者你后台加我,找我给你看看。

第一步,开始节点

开始节点一共有四个参数,分别是 img_prompt , left_top_txt , right_top_txt , bottom_txt 。

以上这四个参数分别代表的意思为,视频内容主题(内容主题图像生成 logo 图片),视频左侧顶部文章,视频右侧顶部文字,视频底部文字。

Image

比如这几个参数我输入了以下这个值,那么获得的对应的视频如下,上下左右效果就是这样。

bottom_txt : “公众号:AI偶然”

img_prompt : “如何拥有恐怖的执行力?”

left_top_txt : “思维模型”

right_top_txt : “认知觉醒”

Image

第二步,大模型生成文案节点

大模型选择 DeepSeek-R1 ,直接选择最好的,这样生成的相应主题文案看起来比较像人写的,毕竟 DeepSeek R1 是国产大模型,懂中国人。

它的输入值 input 来源为开始节点的 img_prompt 。

Image

这个节点的提示词加我就给你,哈哈哈。

第三步,文本处理节点

这一步的作用主要是将大模型生成的文案进行分隔,这样的话在视频中看起来就是一句话一两秒这样。

它的输入值来源是大模型的 output ,分隔符为 | 。

Image

第四步,图像生成节点

这个节点的作用,就是生成视频中间的那个图像 logo 的图片,它的变量名 prompt 数值来源于开始节点的 img_prompt 。

Image

正向提示词
{{prompt}},极简黑色线条绘画绘画风格(只有黑白两种色)

第五步,抠图节点

这个抠图节点就是把上一个节点生成的完整图片,把里面的那个图像 logo 抠出来,它的数值来源就是图像生成节点的 data 。

Image

第六步,批处理节点。

这个节点的作用主要是将刚刚那些生成图片以及文案,变成一个个短视频,并且将这些短视频片段组装打包成一个短视频的数组,为下一步把这些短视频组装成一个完整的视频做准备。

注:数组你可以把它理解为超市门口那种储物柜的柜子,它的值就是每个格子,懂吧兄弟?

批处理(外部),外部的输入值为 input 变量值的来源为文本处理节点的 output ,输出值为 imgs2video_lite 节点的 [videoUrl]*n 。

Image

批处理(内部),内部有四个节点,分别是选择器(第一),画板(第二),音频(第三),视频(第四)。

Image

选择器节点(内部)

它的作用主要是用来过滤一些空数据以及作为终止条件,这里的空数据,意思就是那些没有内容的段落。

如果这个位置不进行空数据的判断的话,会在后面合成视频的时候出现 bug 。

判断输入值,如果输入值不为空进入下一步,如果为空的话结束。

Image

画板节点(内部)

它作用的话就是源源不断生成视频片段的图片,为下一步将这些图片转成片段短视频做准备。

它的输入值一共有 6 个,前 3 个讲过了,这里我讲一下后面三个,image_back_txt,video_txt,img,分别为,背景文字,视频文本内容,图片。

Image

音频节点(内部)

它的作用主要是把那些一段段的文本,转化为语音的形式,其中 voice_id 可以更换不同的声音。

Image

视频节点(内部)

把上面那些图片,音频,打包成一段段的视频装进数组(刚刚解释过了)里面。

注意这个节点是要收费的,每天免费 API 调用量为 100 ,应该是够你用的了。

Image

第七步,视频节点

它的作用主要是将上一步生成一段段的视频组装成一个完整的视频,并且输出视频的链接。

注意,这个节点和刚刚那个节点一样,也是要收费的,它两是一家的。

Image

第八步,结束

没啥好说的,直接把视频的链接输出来就够了。

Image

我们来看看整体生成的视频效果如何,刚进职场,打工省钱版,没那么多钱冲 token ,所以就不整那么长的时长了。

1

,时长01:05

这里我们还需要配上适合内容的音频以及 BGM 才能将视频的呈现效果拉满,后面的剪辑等等啥的,就交给各位来操作了。

总结

整体的流程就是这样,如果你的要求高一些,那么你就根据自身的情况,对工作流进行相应的调整就好。

本次的工作流难度还是比较大的,如果有哪一步不清楚,可以留言讨论。

如果你觉得文章没讲明白,也请你留言,最好就是来联系我,我需要根据大家的情况进行改进,用大家听得懂的话来讲,这对我极其重要,拜托各位了。

最后,无论你是用这种视频来做小红书变现,还是学习视频方面的工作流,我都希望你能坚持做下去,这样你才有机会成功。

感谢你的耐心。

如果看完喜欢,请帮忙转发分享一下,你的点赞转发,就是我更新下去的动力!

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述

👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

### Coze智能体自动视频生成技术原理 Coze智能体作为一款先进的AI工具,其核心能力在于通过集成多种插件和技术模块来完成复杂的任务自动化处理。对于自动视频生成这一特定功能而言,其实现依赖于以下几个关键技术环节: #### 1. **多模态数据融合** 自动视频生成的第一步是对输入的数据进行解析和理解。这通常涉及文本、图像以及音频等多种形式的信息。Coze智能体会利用预训练的多模态大模型对这些异构数据源进行统一表示[^2]。例如,当用户提供一段描述性的文字脚本时,该模型会将其转化为结构化语义信息,以便后续阶段使用。 #### 2. **场景重建与视觉合成** 基于上述提取出的语义特征,系统将进一步运用计算机图形学技术和深度学习算法来进行三维场景建模或者二维画面渲染。此过程可能涉及到GANs(生成对抗网络)、VAEs(变分自编码器)以及其他类型的神经渲染方法,它们共同作用以创造出逼真的视觉效果[^3]。 #### 3. **动态叙事逻辑构建** 不仅限于静态的画面呈现,优秀的视频还需要具备连贯的故事线和发展脉络。因此,在制作过程中引入了强化学习机制,让机器学会模仿甚至超越人类编剧的能力——即根据给定的主题或情节线索规划整个影片的发展轨迹,并确保每帧之间过渡平滑自然[^4]。 #### 4. **音效配音匹配优化** 音乐节奏的选择、旁白声音的设计同样不可忽视。借助TTS(Text To Speech)技术可以将任意书面语言转换成清晰流畅的人声朗读;同时配合情感分析预测观众喜好倾向从而挑选最合适的背景旋律增添氛围感。 ```python import torch from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM def generate_video_script(prompt): tokenizer = AutoTokenizer.from_pretrained("model_name") model = AutoModelForSeq2SeqLM.from_pretrained("model_name") inputs = tokenizer([prompt], return_tensors="pt", max_length=512, truncation=True) outputs = model.generate(**inputs) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text ``` 以上代码片段展示了如何加载一个预先训练好的序列到序列模型用于生成视频剧本的基础框架。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值