【机器学习笔记】K-Nearest Neighbors Algorithm(最近邻算法,KNN)

本文介绍了K-Nearest Neighbors(KNN)算法的步骤,包括数据集准备、K值选择、新样本分类。KNN是一种简单有效的分类算法,通过找到新样本的K个最近邻来决定其类别。K值的选择影响分类结果,较小的K值易受异常值影响,较大的K值可能导致数据较少的类别被覆盖。文中还提及使用PCA进行数据简化和交叉验证法优化K值。
摘要由CSDN通过智能技术生成

要点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值