基于梯度的优化方法

本文介绍了优化问题的基本概念,探讨了微积分在优化中的作用,特别是梯度、雅克比矩阵和海森矩阵的含义。梯度是多维函数的导数向量,指示了函数值下降最快的方向。在最速下降法中,沿着负梯度方向移动可以最快减少目标函数值。海森矩阵提供了关于函数曲率的信息,有助于判断局部极小值、极大值和鞍点。约束优化则是考虑了特定条件下的最优化问题。
摘要由CSDN通过智能技术生成

1.优化指的是改变x以最小化或最大化的某个函数f(x)的任务

我们通常以最小化f(x)指代大多数最优化问题。最大化可经由最小化算法 -f(x) 来实现。

我们希望最小化或最大化的函数叫目标函数,当我们对其进行最小化的时候,也叫作代价函数或损失函数或误差函数。

我们经常使用一个上标*表示最小化或最大化函数的x值: , 我们通过改变x的值来最小化或者最大化函数f(x)的值。

2. 微积分概念如何于优化联系呢????

加入我们有一个函数y=f(x),其中x和y实数。这个函数的导数(Derivative)记为 或者 ,导数 代表f(x)在点x处的斜率,它表明需要如何缩放输入的小变化以在输出获得相应的变化:f(x+a) = f(x)+ a

导数告诉我们如何更改x来略微地改善y,当=0的时候,导数无法提供往哪个方向的移动信息。=0的点称为临界点或驻点。临界点除了局部极小点(local minimum)、局部极大点(local maxmum)外,还有鞍点,鞍点(saddle points)既不是最小点也不是最大点。如下图所示:

这里写图片描述

使f(x)取得全局最小值的点是全局最小点。只有一个全局最小点(global minimum)或存在多个全局最小点的函数是有可能的,还可能存在不是全局最优的局部极小点。

这里写图片描述

我们经常最小化具有多维输入的函数:f:,为了使最小化的概念有意义,输出必须是一维的(标量)。我们用偏导数(partial derivatives)的概念针对具有多维输入的函数。偏导数 衡量点x处只有 增加时f(x)如何变化。

3.梯度(gradient)

**梯度是相对一个向量求导的导数(简单来说梯度就是一个导数):**f(多维函数)的导数是包含所有偏导数的向量,记做

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值