【三】仿射变换、投影变换的矩阵形式和特点归纳

1.2D图像变换的矩阵形式

2D图像变换包括:(可用变换矩阵来表示)

  • 平移变换(Translation)

  • 旋转变换(Rotation)

  • 刚体变换(Rigid)

平移(translation)和旋转(rotation)两者的组合称之为欧式变换(Euclidean transformation)或刚体变换(rigid transformation)  

  • 缩放变换(Scaling)

放缩(scaling):分为uniform scalingnon-uniform scaling。

  1. uniform scaling:每个坐标轴放缩系数相同(各向同性)
  2. non-uniform scaling:如果放缩系数为负,则会叠加上反射(reflection)——reflection可以看成是特殊的scaling;

  •  相似变换(Similarity)

相似变换(similarity transformation):刚体变换+uniform scaling ,即平移+旋转+各向同性的放缩;

  • 仿射变换(Affine)

仿射变化(affine transformation):平移、旋转、放缩、剪切、反射任意次序次数的组合,保持二维图形的“平直性”(即:直线经过变换之后依然是直线)和“平行性”(即:二维图形之间的相对位置关系保持不变,平行线依然是平行线,且直线上点的位置顺序不变),其中,tx,ty表示平移量,而参数a,b,d,e反应了图像的旋转、缩放等变换。 

  • 投影变换(Projective)

投影变换:(Projective):2D平面之间的变换,又称为单应变换

 2.各种2D变换的矩阵形式自由度: 

3.各种2D变换的包含关系

参考:

  1. Robotics:Perception课程笔记3 Part2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

火柴的初心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值