[2022]DyOb-SLAM : Dynamic Object Tracking SLAM System

DyOb-SLAM结合了DynaSLAM和VDO-SLAM,利用MaskRCNN进行目标检测,PWC-Net估算光流进行跟踪。系统通过ORB特征和静态点的BA优化构建稀疏地图,同时跟踪并更新动态目标的运动状态。后端优化包括局部和全局BA,部分计算密集型任务如语义分割可迁移到云端。
摘要由CSDN通过智能技术生成

1.作者

Rushmian Annoy Wadud、Wei Sun

2.时间

2022

3.整体架构

在这里插入图片描述
DyOb-SLAMDynaSLAMVDO-SLAM的结合:

  • 基于先验信息使用Mask RCNN分割出动态目标
  • 通过基于光流场景流的算法对运动目标进行跟踪
  • 对静态点进行BA优化

输出:

  • 当前帧显示ORB特征以及Masj信息和对象标签
  • 基于静态特征的稀疏地图
  • 包含动态目标及其随时间更新的运动的全局地图

4.中心思想

1.目标检测

  • Mask-RCNN被用来分割出当前帧的潜在运动目标
    在这里插入图片描述
  • 稠密光流:使用PWC-Net,有助于最大化跟踪点的数量,然后用于跟踪多个对象

2.跟踪

跟踪的输入是RGB图像、每帧的深度信息分割Mask光流信息,其分为 3 个模块:

  • ORB特征提取:采用ORB_SLAM2中提出的
    在这里插入图片描述

  • 相机位姿估计:使用静态的点最小化重投影误差进行相机位姿估计

e ( X k ) = C k − π ( X k − 1 P k − 1 ) e\left(X_{k}\right)=C_{k}-\pi\left(X_{k}^{-1} P_{k-1}\right) e(Xk)=Ckπ(Xk1Pk1)

  • 目标运动跟踪:使用场景流更新动态目标的分割信息,对于场景流的话,静态目标的场景流理论上为0,因此可以用一个阈值来判断目标是运动的还是静止的
  • 目标位姿估计: P k = k − 1 O k P k − 1 P_{k} =^{k-1}O_{k}P_{k-1} Pk=k1OkPk1
    • 目标的运动: k − 1 O k ^{k-1}O_{k} k1Ok
    • P k P_{k} Pk:第K帧静止的点
    • P k − 1 P_{k-1} Pk1:第K-1帧静止的点
    • 在全局参考帧中的目标点和图像帧中的静止点的重投影误差: e ( k − 1 O k ) = C k − π ( X k − 1 [ k − 1 O k ] P k − 1 ) e\left({ }^{k-1} O_{k}\right)=C_{k}-\pi\left(X_{k}{ }^{-1}\left[{ }^{k-1} O_{k}\right] P_{k-1}\right) e(k1Ok)=Ckπ(Xk1[k1Ok]Pk1)
    • 速度的差: E = v g − v e E =v_{g}-v_{e} E=vgve

3.建图

  • 稀疏地图:由静止背景上的特征点三角化生成的稀疏点云

在这里插入图片描述

  • 全局地图:相机的位姿信息目标的运动

在这里插入图片描述

4.后端

  • BA:关键帧和稀疏的地图点(局部+全局)
  • 局部的batch优化:对于局部地图,最小化重投影误差优化相机的位姿
  • 全局的batch优化:对于全局地图,最小化位姿误差优化相机运动目标的位姿

5.云计算

将耗费计算资源的模块放到云端,比如语义分割

5.结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

火柴的初心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值