刘知远:大模型值得探索的十个研究方向

文章提出了对大模型的十个关键研究方向,包括基础理论的探讨,如大模型的网络架构是否已定型在Transformer;效率优化,如何使模型计算更高效;以及安全性和可控性问题,如何确保大模型的生成内容安全可信。此外,还关注大模型的认知学习能力提升,创新应用场景的发掘,数据评价方法以及提高模型使用的易用性。
摘要由CSDN通过智能技术生成

刘知远:大模型值得探索的十个研究方向
https://baai.org/l/27283

  1. 基础理论:大模型的基础理论是什么?

  2. 网络架构:Transformer是终极框架吗?

  3. 高效计算:如何使大模型更加高效?

  4. 高效适配:大模型如何适配到下游任务?

  5. 可控生成:如何实现大模型的可控生成?

  6. 安全可信:如何改善大模型中的安全伦理问题?

  7. 认知学习:如何使大模型获得高级认知能力?

  8. 创新应用:大模型有哪些创新应用?

  9. 数据评价:如何评估大模型的性能?

  10. 易用性:如何降低大模型的使用门槛?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YJII

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值