综述阅读:A guide to deep learning in healthcare
来源:2019 nature medicine
下载地址:https://www.researchgate.net/publication/330203264_A_guide_to_deep_learning_in_healthcare
Abstract
在这里,我们将介绍用于医疗保健的深度学习技术,重点讨论计算机视觉、自然语言处理(only)、强化学习和通用方法中的深度学习。 我们描述了这些计算技术如何影响医学的几个关键领域,并探索如何构建端到端系统。 我们对计算机视觉的讨论主要集中在医学成像上,我们描述了自然语言处理在电子健康记录数据等领域的应用。 同样,在机器人辅助手术的背景下讨论了强化学习,并回顾了基因组学的通用深度学习方法。
Computer Vision
略
Natural Language Processing
自然语言处理 (NLP) 侧重于分析文本和语音以从单词中推断含义。 递归神经网络 (RNN)(现在Transformer?)——有效处理顺序输入(如语言、语音和时间序列数据)的深度学习算法——在该领域发挥着重要作用。NLP 的显着成功包括机器翻译、文本生成和图像字幕。在医疗保健领域,序列深度学习和语言技术为电子健康记录 (EHR) 等领域的应用提供动力。
EHR 正迅速

最低0.47元/天 解锁文章
799

被折叠的 条评论
为什么被折叠?



