机器学习 之 朴素贝叶斯与生成,判别模型,回归与分类

朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。就是那个朴素贝叶斯啊!各个性状(属性)相互独立,例如帅,有钱。。。
贝叶斯公式完全体:
P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) P(B_i|A)=\frac{P(A|B_i)P(B_i)}{\sum^n_{j=1}P(A|B_j)P(B_j)} P(BiA)=j=1nP(ABj)P(Bj)P(ABi)P(Bi)

朴素贝叶斯(Naive Bayes,NB)是基于“特征之间是独立的”这一朴素假设,应用贝叶斯定理的监督学习算法,是一种分类算法;
样本一般是一个向量,例如[身高,体重…],让你判断是男的是女的,可以这样实现:
P ( y ∣ x 1 , x 2 , . . . x k ) = P ( y ) P ( x 1 , x 2 , . . . x k ∣ y ) P ( x 1 , x 2 , . . . x k ) P(y|x_1,x_2,...x_k)=\frac{P(y)P(x_1,x_2,...x_k|y)}{P(x_1,x_2,...x_k)} P(yx1,x2,...xk)=P(x1,x2,...xk)P(y)P(x1,x2,...xky)
首先呢,求出这个结果(在这个特征下,是女人的概率),你需要数据集中女人的概率,这个数据集下,女人是这个特征的条件概率(数据集很大,绝对正常的),和这个特征占数据集中所有特征的概率,这样一组合,就得出了这个结果,然后计算这个特征是男人的概率,的出来的几个概率取最大的那个,就是这个分类了,这就是贝叶斯分类方法。

朴素贝叶斯呢,在求解各个参数概率是用最大似然(样本均值估计期望),整体用后验(说白了就是条件概率,后验是贝叶斯的一种,贝叶斯就是条件概率)。核心就是估计类先验概率和各属性的类条件概率(总和就是后验概率)。因为甭管分子还是分母,都是最大似然(样本均值估计期望)出来的。

每日小常识:

判别模型(一个模型生出所有)与生成模型(多个模型生成各自的)

对于判别式模型来说求得 P ( Y ∣ X ) P(Y|X) P(YX),线性回归模型、支持向量机SVM等都是判别式模型,这些模型的特点都是输入x可以直接得到y(或者说是归于哪一个Y的概率,一个模型,得出属于各个Y的概率,最大的获胜)。

而生成式模型求得P(Y,X),机器学习中逻辑回归模型,朴素贝叶斯模型、隐马尔可夫模型HMM等都是生成式模型,对于输入X,需要求出好几个联合概率,然后较大的那个就是预测结果(多个模型,每个模型只输出一个结果,最大的获胜)。

判别式模型举例:要确定一个羊是山羊还是绵羊,用判别模型的方法是从历史数据中学习到模型(超平面模型),然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率。

生成式模型举例:用生成模型的方法是
根据山羊的特征首先学习出一个山羊的模型,
然后根据绵羊的特征学习出一个绵羊的模型,
然后从这只羊中提取特征,放到山羊模型中看概率是多少,在放到绵羊模型中看概率是多少,哪个大就是哪个。

回归模型是连续的
分类模型是离散的
回归问题与分类问题本质上都是要建立映射关系,回归与分类的根本区别在于输出空间是否为一个度量空间。回归得出的值是可以用均值方差评价的,而分类只能得出是非,没有度量评价。

特性分类回归
输出类型离散数据连续数据
目的寻找决策边界找到最优拟合
评价方法精度(accuracy)、混淆矩阵等SSE(均方误差sum of square errors)或拟合优度

并不能直白地说出根本区别,而是在各个方面都有区别。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值