近年来,三维模型的应用越来越广泛,如虚拟现实、游戏、建筑等领域都有其应用。然而,手动建模费时费力,因此研究如何通过计算机自动生成三维模型成为了一个热门课题。其中,基于立体视觉技术实现的三维模型重建方法因其精度高、效率快而备受关注。在本文中,将介绍如何使用 MATLAB 实现基于立体视觉的三维模型重建。
首先,我们需要从左右两个不同角度获取物体的图像(通常要求多张图像才能达到更好的效果)。接着,我们对这些图像进行标定,旨在确定摄像机的位置和姿态。在确定摄像机参数后,我们就可以计算出两幅图像间的基础矩阵(fundamental matrix)或基础变换(fundamental transform),用于匹配两幅图像中对应点的位置。
接下来,我们使用立体匹配算法(stereo matching algorithm)来得到左右两个图像中对应点的深度(depth)信息。常见的算法有 SAD 算法、SSD 算法和 NCC 算法等,这里我们采用了经典的 SAD 算法。在得到深度信息之后,可以通过三角测量(triangulation)计算出物体中每一点的空间坐标,从而重建出物体的三维模型。
下面是使用 MATLAB 实现立体匹配的代码:
left = imread('left.png');
rig