图论分割与全景分割
传统图分割算法相关工作
预计在2.10(春节假期结束为止)完成相关工作,尽可能提前完成工作
工作目标:(春节假期结束前完成 (20天左右))
-
明确问题的定义
-
明确图分割算法的评价标准(1天)
- 理解总结各个算法的核心思想 (15天)
- 总结算法中存在的问题以及思考改进措施 (与上一步同步进行)
- 挑选比较好的算法(多个)进行复现 (5天)
全景分割相关工作
工作目标:
- 阅读论文,了解目前的算法主体流程以及核心思想 (1周)
- 挑选合适的数据集,明确评价指标
- 复现一部分算法以及核心的框架or自己搭建合理的框架
- 对网络结构进行优化,使用深度学习方法以及加入合适的传统方法,创新
传统图分割算法
- 概述
- 把图像分割问题与图的最小割(mincut)问题相关联。
- 将图像映射为带权无向图G=<V,E>
- 图中每个节点N∈V对应于图像中的每个像素,每条边∈E连接着一对相邻的像素
- 边的权值表示了相邻像素之间在灰度、颜色或纹理方面的非负相似度。
- 图像的一个分割s就是对图的一个剪切,被分割的每个区域C∈S对应着图中的一个子图。
- 分割的最优原则就是使划分后的
- 子图在内部保持相似度最大
- 子图之间的相似度保持最小
- 基于图论的分割方法的本质就是移除特定的边,将图划分为若干子图从而实现分割。
- 现有算法
- GraphCut
- GrabCut
- RandomWalk
- Entropy Rate Superpixel Segmentation
- Superpixels
- Graph-based segmentation
- Ncut
- Turbopixel
- Quick-shift
- GCa10 and GCb10
- SLIC
- 最小生成树等
- 基本步骤
- 转化问题
- 建立分割准则
- 通过特定算法求解
全景分割(Panoptic Segmentation)
几个概念:超像素、语义分割、实例分割、全景分割
-
数据集
-
现在仅有的三个同时包括语义分割和实例分割标注的数据集:
-
Cityscapes
5000 张图片,2975 张 train,500 张 validation, 1525 张 test.
自动驾驶场景;像素级标注,19 类语义分割,其中 8 类实例级分割.
-
ADE20k
25k 张图片,20k 张 train, 2k val,3k test.
像素级分割,100 类 thing,50 类 stuff.
-
Mapillary Vistas
25k 张街景图片, 18k 张 train,2k 张 val,5k 张 test.
-
COCO 2018 Panoptic Segmentation
-
-
-
评价标准: Panoptic Quality(PQ).
-
分割质量(SQ)
S Q = ∑ ( p , g
-