将知乎专栏文章转换为 Markdown 文件保存到本地

一、参考内容

参考知乎文章`代码 | 将知乎专栏文章转换为 Markdown 文件保存到本地,利用代码为GitHub:https://github.com/chenluda/zhihu-download。

二、步骤

1.首先安装包flask、flask-cors、markdownify
2. 运行app.py
在这里插入图片描述
3.在浏览器中打开链接,并填写URL和Cookies
在这里插入图片描述

获取Cookies的步骤
步骤 1: 进入知乎首页并登录
进入知乎首页,登录账号后按下 F12,点击 Network 选项卡;
在这里插入图片描述

步骤 2: 获取 Cookies
刷新知乎首页,在 Network 中随意点击一个 Fetch 项(注意前面的小图标),在右边的 Headers 中找到 Cookie,这段代码就是知乎 Cookie。
在这里插入图片描述
4.最后点击转换为MARKDOWN即可下载

<think>好的,我现在需要帮用户解决关于按银行统计年度业务次数并进行行列转换的问题。首先,用户提到的是行列转换,这通常涉及到将数据从长格式转换为宽格式,或者反过来。在SQL中,常用的方法是使用PIVOT或者CASE WHEN语句。不过用户可能是在使用Excel、Python的pandas库,或者其他工具,比如数据库如MySQL、SQL Server等。需要先确定用户使用的工具,但用户没有明确说明,所以可能需要覆盖多种情况。 用户还提到需要教程、百度文档资料,所以我需要推荐一些具体的资源,同时也要给出一个示例,方便用户理解。首先,我应该回忆一下常见的行列转换方法,比如在SQL中使用PIVOT,或者在Excel中使用数据透视表。Python的pandas有pivot_table函数,这可能也是一个常用方法。 接下来,我需要确保回答的结构清晰,符合用户的要求,包括使用中文,正确的LaTeX格式,生成相关问题,引用标识等。同时,用户提供的示例中有关快速排序的代码和问题,因此可能需要提供一个类似的代码示例,比如使用Python的pandas进行操作。 首先,解释行列转换的基本概念,然后针对不同工具给出具体方法。例如,在SQL中使用PIVOT,可能是一个例子;在Excel中使用数据透视表;在Python中使用pandas的pivot方法。同时,每个部分需要给出具体的步骤和代码示例,确保用户能够跟随操作。 另外,用户需要按银行统计每年的业务次数,这意味着原始数据可能包含银行名称、年份、业务次数等字段,需要将这些数据按银行作为行,年份作为列进行展示,每个单元格显示对应的业务次数。这正是一个典型的长宽案例。 需要验证这些方法是否正确,比如SQL的PIVOT语法在不同数据库中的差异,例如SQL Server和Oracle支持PIVOT,而MySQL可能需要使用CASE WHEN来实现。因此,可能需要提到不同数据库的情况,或者推荐通用的方法。 在提供参考资料时,可能需要推荐一些百度文档的关键词,或者直接提供搜索建议,因为无法直接链接外部资源。同时,站内引用需要处理,但用户提供的引用[^1]是关于技术讨论频度的,可能与当前主题关联不大,可能需要忽略或寻找相关引用。不过用户提供的引用似乎不太相关,可能需要检查是否有误,或者用户希望如何引用。这里可能需要假设引用[^1]是与技术讨论相关的,但可能与行列转换无关,所以或许在回答中不需要特别引用,或者需要确认是否有其他引用来源。 最后,生成相关问题,例如行列转换的其他应用场景、常见错误、优化方法等。 现在需要组织这些思路,确保符合用户给出的系统级指令,特别是LaTeX格式的正确使用,例如在行内公式中使用$...$,独立公式使用$$...$$,并且正确应用中文回答。同时,检查是否有遗漏的步骤,比如数据准备阶段,示例数据是否合理,代码是否可执行等。 可能还需要考虑用户的实际应用场景,比如银行统计年度业务次数可能涉及大量数据,因此性能优化也是一个潜在的问题,可以在相关问题中提到。另外,行列转换后的数据分析,比如如何计算每年的总和或比较不同银行的表现,也可能作为相关问题。 总结步骤: 1. 解释行列转换的应用场景。 2. 提供不同工具下的实现方法(SQL、Excel、Python)。 3. 每个方法给出具体示例代码或步骤。 4. 推荐相关学习资料和搜索关键词。 5. 生成相关问题。 需要确保每个部分都清晰,代码示例正确,特别是Python的pandas部分,可能需要使用pivot_table或melt函数,根据需求。同时,SQL示例可能需要考虑不同数据库的语法差异,建议使用标准SQL或注明特定数据库。 检查是否有LaTeX公式的需求,比如在解释统计方法时是否需要数学表达式,例如求和、计数等,但用户的问题可能不需要复杂的数学公式,但根据系统指令,所有行内数学表达式必须用$...$,所以如果有的话需要注意格式。 例如,在解释统计次数时,可以提到计数公式$count(year)$,但可能不需要,所以可能不需要添加额外的数学公式,但需要确保如果有的话正确使用格式。 最后,确保回答的结构符合用户要求,使用标题、代码块、列表等,并且没有使用Markdown格式,但用户提供的示例中使用了代码块和列表,所以应该保留这些结构,但根据用户可见层的指示,可能需要调整格式。不过原示例中用户可见层允许使用代码块,所以可以保留。</think>### 按银行统计年度业务次数行列转换方法 行列转换常用于将“长格式”数据(多行记录)转换为“宽格式”数据(单行多列),例如按银行展示各年度业务次数。以下是具体实现方法: --- #### 1. **SQL实现(以MySQL为例)** 若原始表结构为`bank_trans(bank_name, year, count)`,使用`CASE WHEN`实现行列转换: ```sql SELECT bank_name, SUM(CASE WHEN year = 2020 THEN count ELSE 0 END) AS `2020`, SUM(CASE WHEN year = 2021 THEN count ELSE 0 END) AS `2021`, SUM(CASE WHEN year = 2022 THEN count ELSE 0 END) AS `2022` FROM bank_trans GROUP BY bank_name; ``` --- #### 2. **Python实现(Pandas库)** 使用`pivot_table`函数直接生成宽表: ```python import pandas as pd # 示例数据 data = { 'bank_name': ['BankA', 'BankA', 'BankB', 'BankB'], 'year': [2020, 2021, 2020, 2021], 'count': [150, 200, 90, 130] } df = pd.DataFrame(data) # 行列转换 pivot_df = df.pivot_table(index='bank_name', columns='year', values='count', fill_value=0) print(pivot_df) ``` --- #### 3. **Excel实现** 通过数据透视表工具: 1. 选中数据区域 → 插入 → 数据透视表 2. 将“银行”拖入行,将“年份”拖入列,将“业务次数”拖入值 3. 右键值字段 → 值字段设置 → 选择“求和”或“计数” --- ### 学习资料推荐 - **百度文档关键词**: - “SQL行列转换教程” - “Pandas数据透视表实战” - “Excel数据透视表行列转换” - **推荐教程**: - 菜鸟教程《SQL CASE WHEN用法》 - 专栏《Pandas数据重塑技巧》 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值