数值计算方法第一章—数值计算引论

本文介绍了数值计算中的误差来源,包括观测误差、模型误差和计算误差,并详细阐述了近似数的误差表示,如绝对误差、相对误差和有效数字。此外,讨论了数值稳定性和如何减小运算误差,强调了数值稳定算法的重要性。
摘要由CSDN通过智能技术生成

数值计算引论

本文参考书为马东升著《数值计算方法》

误差的来源

  • 观测误差(测量误差)

    观测或实验所得到的参数与真值的误差

  • 模型误差(描述误差)

    建立的数学模型与实际事物的差距。如自由落体的数学模型 s = 1 2 g t 2 s=\dfrac 12gt^2 s=21gt2 忽略了空气阻力

  • 截断误差(方法误差)

    许多数学运算是通过极限过程来定义的,而计算机只能完成有限次运算。故实际应用需要将解题方案加工成有限序列,即表现为无穷过程的截断

    例:数学模型是无穷级数
    ∑ k = 0 + ∞ 1 k ! f ( k ) ( x 0 ) \sum_{k=0}^{+\infty}\frac 1{k!}f^{(k)}(x_0) k=0+k!1f(k)(x0)
    实际计算中,只能
    截取
    前面的有限项
    ∑ k = 0 n − 1 1 k ! f ( k ) ( x 0 ) \sum_{k=0}^{n-1}\frac 1{k!}f^{(k)}(x_0) k=0n1k!1f(k)(x0)
    即舍去无穷级数后半段,产生了截断误差


  • 舍入误差(计算误差)

    因为受计算机字长限制,参与运算的数据总是只能具有有限位,原始数据表示可能产生误差,每一次运算又可能产生新的误差

    例:圆周率只能存储有限位,如 π \pi π 存储为四位小数 3.1416 3.1416 3.1416 ,则
    3.1416 − π = 0.0000073 ⋯ 3.1416-\pi=0.0000073\cdots 3.1416π=0.0000073
    即为
    舍入误差

近似数的误差表示

  • 绝对误差

    x ∗ x^* x 为准确值 x x x 的一个近似值,称
    e ( x ∗ ) = x − x x e(x^*)=x-x^x e(x)=xxx
    是近似值 x x x 的绝对误差。简记为 e ∗ e^* e

    因为准确值往往不知道,故定义:若
    ∣ e ∗ ∣ = ∣ x − x ∗ ∣ ≤ ε ( x ∗ ) |e^*|=|x-x^*|\le \varepsilon(x^*) e=xxε(x)
    则称 ε ( x ∗ ) \varepsilon(x^*) ε(x) 为绝对误差限。简记为 ε ∗ \varepsilon^* ε

    例:

    四舍五入误差限
    ∣ x − x ∗ ∣ ≤ 1 2 × 1 0 m − n |x-x^*|\le \dfrac 12 \times 10^{m-n} xx21×10mn
    即四舍五入得到的近似数的误差限末位的半个单位

    例: 圆周率四舍五入近似数3.1416,求其误差限

    解:

    • 法1,误差限是末位的半个单位

    ε ∗ = 1 2 × 1 0 − 4 \varepsilon ^*=\dfrac 12\times 10^{-4} ε=21×104

    • 法2(主要方法)

    ε ∗ = 1 2 × 1 0 m − n   ,   m = 1   ,   n = 5 \varepsilon^*=\dfrac 12\times10^{m-n}\ ,\ m=1\ ,\ n=5 ε=21×10mn , m=1 , n=5


    m − n = − 4   ,   ε ∗ = 1 2 × 1 0 − 4 m-n=-4\ ,\ \varepsilon ^*=\dfrac 12\times 10^{-4} mn=4 , ε=21×

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值