菜鸡HP的被虐日常(9)当扩大n倍以后……⑤

B y H o l y P u s h By\quad HolyPush ByHolyPush

聪明的 t x l txl txl:二项式定理是排列组合中的一个非常重要的定理。我们首先从排列组合讲起。

聪明的 t x l : txl: txl: 3 3 3个穿着不同衣服的 H P HP HP站在一行拍照,一共有多少种可能的站位方式?
愚蠢的 H P : HP: HP:太简单惹,假设三个人分别为 a , b , c , a,b,c, a,b,c,则有 a b c , a c b , b a c , b c a , c a b , c b a abc,acb,bac,bca,cab,cba abc,acb,bac,bca,cab,cba共六种排列方式。

聪明的 t x l : txl: txl: 10 10 10个穿着不同衣服的 H P HP HP站在一行拍照,一共有多少种可能的站位方式?
愚蠢的 H P : . . . HP:... HP:...数据太大了不会做了厚。
聪明的 t x l : txl: txl:太笨了。我们想象这样一个情景。 10 10 10 H P HP HP依次选择站位,第一个人有 10 10 10个位置可以选,第二个有 9 9 9个位置可以选 . . . . . . ...... ......到最后一个人的时候就只有一个位置可以选,所以一共有 10 × 9 × . . . × 1 = 3628800 10×9×...×1=3628800 10×9×...×1=3628800种方式。在数学中,为了简便,我们把这种 1 × 2 × 3 × . . , × ( n − 1 ) × n 1×2×3×..,×(n-1)×n 1×2×3×..,×(n1)×n记为 n ! n! n!,表示 n n n的阶乘。即答案是 10 ! = 3628800 10!=3628800 10!=3628800种。特殊地,我们规定 0 0 0的阶乘为 1 。 1。 1

聪明的 t x l : txl: txl: 10 10 10个穿着不同衣服的 H P HP HP,从其中选出 5 5 5个站在一行拍照,一共有多少种可能的站位方式?
愚蠢的 H P : HP: HP:第一个人有 10 10 10个位置可以选,第二个人有 9 9 9个位置可以选,一直到第 5 5 5个人有 6 6 6个位置可以选,所以答案是 10 × 9 × 8 × 7 × 6 = 30240 10×9×8×7×6=30240 10×9×8×7×6=30240种方式,对吧嘻嘻。
聪明的 t x l : txl: txl:不错。我们把这种问题称为“排列”,用 A n m A_n^m Anm或者 P n m P_n^m Pnm(个人更喜欢用 P P P)表示从 n n n个里选出 m m m个进行排列的方案数。具体计算方法,从刚刚的例子中就可以看出 P n m = n ! ( n − m ) ! P_n^m=\frac{n!}{(n-m)!} Pnm=(nm)!n!
愚蠢的 H P HP HP一把子把 1280 N 1280N 1280N t x l txl txl抱了起来以表示兴奋。

聪明的 t x l : txl: txl:下一个问题。有 10 10 10个一模一样的 H P HP HP站在一行拍照,一共有多少种可能的照片?
愚蠢的 H P : HP: HP:这不还是 10 ! 10! 10!个吗?
聪明的 t x l : txl: txl:你想铌蚂呢?十个 H P HP HP一模一样,你怎么排它的照片都长那样啊!所以只有 1 1 1个。

( ( (愚蠢的 H P HP HP恍然大悟 ) ) )

聪明的 t x l : txl: txl:又一个问题。有 10 10 10个一模一样的 H P HP HP,从中选出 5 5 5个站在一行拍照,一共有多少种可能的照片?
愚蠢的 H P : HP: HP:我又不会厚,你再这样欺负小朋友我就要打 12315 12315 12315报警了惹。
聪明的 t x l : txl: txl:太笨了!我们这样想吧。因为这种问题里面我们不考虑顺序的问题,所以我们可以先算出考虑顺序的可能数,一共有 10 ! 5 ! \frac{10!}{5!} 5!10!种,再算出每种组合被重复算了多少次。例如, 12345 12345 12345这种组合它可以写成 15423 , 23154 , 53142 15423,23154,53142 15423,23154,53142等一共有 5 ! 5! 5!种写法,但实际上这样的我们只能算成 1 1 1次,而每一种组合我们都把它算了那么多次,所以要再除以一个 5 ! 5! 5!。所以一共是 10 ! 5 ! × 5 ! = 252 \frac{10!}{5!×5!}=252 5!×5!10!=252种。我们把这种不考虑顺序问题的称为“组合”,用字母 C n m C_n^m Cnm表示从 n n n个里面选出 m m m个进行组合的方案数。从上面的分析过程来看,我们可以得到组合数的计算公式 C n m = P n m P m m = n ! m ! ( n − m ) ! C_n^m=\frac{P_n^m}{P_m^m}=\frac{n!}{m!(n-m)!} Cnm=PmmPnm=m!(nm)!n!
愚蠢的 H P : HP: HP:下面好对称,是不是说, C n m = C n n − m ? C_n^m=C_n^{n-m}? Cnm=Cnnm?
聪明的 t x l : txl: txl:没错。从另一种意义上理解,你从 n n n个里选出 m m m个,实际上是和 n n n个里扔掉 n − m n-m nm个一样的。

排列组合问题可以出得很难,是非常考验分析能力的一种题型,但是高中要求比较低,出的题目都不会很难,所以不需要太过担心。而且今天的重点并不在于组合数的计算,而是二项式定理,所以就不过多地展开了。

聪明的 t x l : txl: txl:组合数里有一个非常有用的东西,叫做杨辉三角,在西方叫做帕斯卡三角,但帕斯卡比杨辉晚了足足 400 400 400年左右。不扯了,我们来看看这个三角形。
在这里插入图片描述
聪明的 t x l : txl: txl:在这幅图中,从上到下分别为第 0 0 0行、第 1 1 1 … … …… 从左到右分别为第 0 0 0行、第 1 1 1 … … …… 这样的话,在第 n n n m m m列所代表的数就是 C n m C_n^m Cnm
愚蠢的 H P : HP: HP:我看看。第 5 5 5行第 2 2 2个数是 10 , C 5 2 = 10 10,C_5^2=10 10,C52=10,貌似是这样的 ! ! !
聪明的 t x l : txl: txl:这个三角形中,我们可以发现,每一个格子上的数都是其上方的两个格子中的数之和。因此我们可以得出推论 C n m = C n − 1 m − 1 + C n − 1 m C_n^m=C_{n-1}^{m-1}+C_{n-1}^m Cnm=Cn1m1+Cn1m
愚蠢的 H P : HP: HP:可是你还是没有说二项式定理。
聪明的 t x l : txl: txl:好,我现在就给你讲二项式定理。

聪明的 t x l : txl: txl:你把 ( x + y ) 3 (x+y)^3 (x+y)3化出来。
愚蠢的 H P : HP: HP:简单, x 3 + 3 x 2 y + 3 x y 2 + y 3 x^3+3x^2y+3xy^2+y^3 x3+3x2y+3xy2+y3
聪明的 t x l : txl: txl:你在看看第三行的四个系数。
愚蠢的 H P : . . . 1 , 3 , 3 , 1 ? ! HP:...1,3,3,1?! HP:...1,3,3,1?!
聪明的 t x l : txl: txl:你再把 ( x + y ) 4 (x+y)^4 (x+y)4化出来。
愚蠢的 H P : x 4 + 4 x 3 y + 6 x 2 y 2 + 4 x y 3 + y 4 , HP:x^4+4x^3y+6x^2y^2+4xy^3+y^4, HP:x4+4x3y+6x2y2+4xy3+y4,第四行的杨辉三角, 1 , 4 , 6 , 4 , 1 ? ! 1,4,6,4,1?! 1,4,6,4,1?!这也太神奇了!
聪明的 t x l : txl: txl:没错,我们可以得出推论, ( x + y ) n = C n 0 x n + C n 1 x n − 1 y + . . . + C n n − 1 x y n − 1 + C n n y n (x+y)^n=C_n^0x^n+C_n^1x^{n-1}y+...+C_n^{n-1}xy^{n-1}+C_n^ny^n (x+y)n=Cn0xn+Cn1xn1y+...+Cnn1xyn1+Cnnyn,用 Σ \Sigma Σ写就是 ( x + y ) n = ∑ i = 0 n C n i x i y n − i (x+y)^n=\sum_{i=0}^n {C_n^ix^iy^{n-i}} (x+y)n=i=0nCnixiyni
愚蠢的 H P : HP: HP:怎么证明呢 ? ? ?
聪明的 t x l : txl: txl:我们可以这样想。我们面前有 n n n个选择,每次你都可以选择 x x x或者 y y y,如果选了 i i i x x x,那么必定选了 n − i n-i ni y y y,对应的项就是 x i y n − i x^iy^{n-i} xiyni。而从 n n n个中选择 i i i x x x的方案数有 C n i C_n^i Cni种,所以 x i y n − i x^iy^{n-i} xiyni的系数便为 C n i C_n^i Cni

从这个式子中我们可以发现的一点是,令 x = 1 , y = − 1 x=1,y=-1 x=1,y=1,则有 0 = C n 0 − C n 1 + C n 2 − C n 3 . . . C n n 0=C_n^0-C_n^1+C_n^2-C_n^3...C_n^n 0=Cn0Cn1+Cn2Cn3...Cnn。由此也可以发现,在杨辉三角的同一行中,所有第奇数项的和等于所有第偶数项的和。
然后就可以快快乐乐回到三角函数啦!

c o s ( n x ) + i s i n ( n x ) = ( c o s x + i s i n x ) n cos(nx)+isin(nx)=(cosx+isinx)^n cos(nx)+isin(nx)=(cosx+isinx)n
= ∑ k = 0 n C n k ( c o s x ) k ( i s i n x ) n − k =\sum_{k=0}^nC_n^k(cosx)^k(isinx)^{n-k} =k=0nCnk(cosx)k(isinx)nk。将右边算出来后,实部与实部相等,虚部与虚部相等,便可求出正余弦 n n n倍角公式。

举个栗子, n = 3 n=3 n=3的时候,
c o s 3 x + i s i n 3 x = ( c o s x + i s i n x ) 3 = c o s 3 x + 3 i c o s x 2 s i n x − 3 c o s x s i n 2 x − i s i n 3 x = [ c o s 3 x − 3 c o s x ( 1 − c o s 2 x ) ] + i [ 3 ( 1 − s i n 2 x ) s i n x − s i n 3 x ] = ( 4 c o s 3 x − 3 c o s x ) + i ( 3 s i n x − 4 s i n 3 x ) cos3x+isin3x=(cosx+isinx)^3=cos^3x+3icosx^2sinx-3cosxsin^2x-isin^3x=[cos^3x-3cosx(1-cos^2x)]+i[3(1-sin^2x)sinx-sin^3x]=(4cos^3x-3cosx)+i(3sinx-4sin^3x) cos3x+isin3x=(cosx+isinx)3=cos3x+3icosx2sinx3cosxsin2xisin3x=[cos3x3cosx(1cos2x)]+i[3(1sin2x)sinxsin3x]=(4cos3x3cosx)+i(3sinx4sin3x),所以对应起来就是 c o s 3 x = 4 c o s 3 x − 3 c o s x , s i n 3 x = 3 s i n x − 4 s i n 3 x cos3x=4cos^3x-3cosx,sin3x=3sinx-4sin^3x cos3x=4cos3x3cosx,sin3x=3sinx4sin3x

愚蠢的 H P : HP: HP:算了算了三角太难了,我们还是去看数列吧 . . . ... ...

欲知后事如何,请听下回因式分解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值