第五课 转置 — 置换 — 向量空间R
一.向量空间
向量运算:相加和数乘(数是标量)
空间:很多向量.一整个空间的向量,但并不是任意向量的组合都能称为空间.
必须满足一定规则,必须能够进行加法和数乘运算,必须能够进行线性组合。
从例子开始(以下讨论均为实数):
1. (这里都是二维实向量)称为一个xy平面,但是这里需要考虑成所有向量组成的向量空间,如:
还可在xy平面中做出图像(通常有箭头),水平(竖直)表示第一(二)分量,整个平面则是
论原点的重要性:对于向量空间,有了这个向量,就必须满足这个向量乘以任何数(包括0),或加上向量空间内的任何向量(包括其相反向量),其结果都必须在向量空间内,而原点显然也在结果之中,所以所有向量空间必须包含0向量(即原点)。
(所有三维实向量组成的向量空间) 如: 是三维向量,而不是二维向量,0也是一个分量
,向量空间,包含了所有的n维向量(以列的形式,即列向量),且它们的分量都是实数
2.加法和数乘必须满足的8条运算规则,但其关键是能否在运算完成后仍处于空间内
“不能”的例子:只取的第一象限(所有分量均非负)
相加可以,但是数乘却不行: 其结果不在第一象限内
对于实数的数乘来说,它不是封闭的,第一象限不构成向量空间
向量空间必须对数乘和加法2种运算是封闭的or对线性组合封闭
二.子空间(类比子集)
1.中的向量空间(即的向量子空间)
任意向量乘以任意的数,其结果均在一条直线上(不能对数乘封闭的,都不是向量空间)
检验加法:直线上的向量+直线上其他向量=直线上某个向量
的向量子空间可以是内的一条直线,但并不是内所有的直线都是子空间
只有内穿过原点的直线才是的子空间(论原点的重要性)
如图 五-二-1 实线是的一个向量子空间,而虚线上的向量数乘0将得到,不在虚线上, 所以虚线并不是的一个向量子空间。
图 五-二-1
综上,a.列出所有的子空间:1,本身(最大的子空间)
2,穿过原点、两端无限延伸的直线
也都是直线,但两者并不相同(类似,但截然不同),只 有一个分量,而“2,”中的直线是中的直线,都有两个量。
3,只包含零向量,通常用Z来表示零向量()
一个零向量就能满足所有法则,它总是构成最小的子空间, 而最大的子空间是空间本身
b.列出所有的子空间:1,本身(最大的子空间)
2,穿过原点、两点无限延伸的直线
3,穿过原点的平面
两个向量不共线,构成一个过原点的平面
两个向量共线,构成一条过原点的直线
4,单个零向量(单个矢量的空间)
2.如何得到向量空间? 矩阵构造
例.如何得到?
核心思想:通过某些向量(属于)构成一个向量组的空间(属于)
a.通过列向量构造
A(在中)通过一系列的线性组合(加法and数乘)所得到的向量构成一个子空间[即列 空间,记作C(A)]
构造矩阵列空间,只用取出矩阵的各列进行线性组合,后所有的线性组合结果构成列空间
第六课 用向量空间和列空间理解 Ax=b
中的子空间:平面P,直线L(均过原点)
1.PL不是的子空间,因为加法不封闭
2.PL=0(L不在P上),所以是的子空间
推广:任意子空间的交集(一般子空间ST)仍是的一个子空间
向量空间:一些向量对一些运算封闭(即向量空间必须满足两个条件:加法封闭和数乘封闭)
所有的线性组合即任意倍的向量v与任意倍的向量w之和,仍在空间中
所有子空间必须包含原点
一,列空间
A= (取了3个向量进行线性组合得不到整个)
1.Ax=b
a.并不是对任意的b都有解
b.b需满足什么条件,方程组才有解
(1).Ax=b有4个方程却只有3个未知数
方程组不总是有解(3个列向量的线性组合,有大量的b不是3个列)
(2).Ax=b有解,当且仅当bA的列空间(即只有b是A中各列的线性组合时)
列空间包含所有A数乘任意的x得到的向量
A中的为主列(中的二维子空间)
[主列选取优先考虑靠前的线性无关向量,去掉也可(相当于去掉),这里去掉是因为没有贡献,能构筑同样的裂空间(,在的平面上,线性相关,没有贡献)]
二.零空间
零空间:一种完全不同的子空间,包含Ax=0所有的解,也必然包括0
零空间是的子空间
C(A)是的子空间
对于m*n矩阵,因为列个数n=未知数,所以多少个x乘以这些列是中的问题
(求列空间,零空间的一般方法——消元)
零空间N(A)是一条中的直线,包括(c取任意数) 一整条直线(经过原点,两端延伸)
回到向量空间和子空间的定义,思考:
怎么知道零空间是向量空间?为什么它能被称作“空间”?
检验:Ax=0的解构成一个子空间
需证明:对任意的一个解x和另一个解,它们之和仍然是解(这是空间的限制条件,即加法封闭)
如果Av=0,且Aw=0,则A(v+w)=Av+Aw=0 (矩阵乘法规则:分配律)
v和w都在零空间内,它们的和v+w也在零空间内
同理可证:Av=0,则A(12v)=12Av=0 (数乘时数可以提到前面)
4个方程却只有3个未知数,如果随便选取右侧向量b,很有可能无解
不过这个例子中的b比较特殊(b是A中的,使得我们可以一眼看出解)
一条不穿过原点的直线
这些解中不包含零向量,所以这些解不构成向量空间/子空间
构造子空间的两种方法
1.列空间:从向量出发,通过线性组合构筑向量空间/子空间
2.零空间:只已知向量必须满足的方程组,从一个方程组中通过让x满足特定条件去得到子空间
第七课 求解Ax=0—主变量—特解
1.,作为列向量,它们方向相同,是的线性组合,即相关于
,所以也与相关,这些在消元中都会表现出来
所以选择消元这种算法(对象是长方阵)
所以主元为0时,不必理会,选取0的后一位为主元,继续消元
2.从一个方程减去另一个方程的倍数,方程组的解不会改变,所以在消元过程中,零空间不会改变
3.因为右侧常数向量为0,所以只用处理方程左侧
为主元一 为主元二 (行)阶梯形 最简行阶梯形
主列(即主变量)为 (主元所在列) 主元上下全为0
矩阵的秩rank(等级,阶级),表示主元个数 本例中主元数量为2,所以矩阵A的秩为R(A)=2
矩阵进行初等行变换、乘以满秩矩阵/可逆矩阵(可逆满秩)、转置,秩都不变
Ax=0Ux=0,但是解和零空间不变
本例中,只有2个主列/主变量(),其余的为自由列(可自由/任意分配数值)
乘数任意,任取,只需求解(通过回代求解)
解1 零空间的一个向量,Ax=0的一个解,表示
中一条无限延伸的直线,在零空间中,但不是整个零空间,因为自由变量有2个
解2
解1,解2的线性组合就可求出整个零空间,即Ax=0的所有解
(c,d取任意数) “+”表示任意线性组合
解1,解2均为零空间上的一条线,线上都是方程组的解
特解(特定的解) 两个特解的线性组合,每个自由变量对应一个特解
“特定”在于给自由变量分配的特定值,构造出整个零空间
有了特解,就有了其任意倍(都在零空间内)
零空间内所包含的正是特解的线性组合
m*n矩阵,n个变量,其秩为r
如果有r个变量是主变量,则有(n-r)个自由变量 [本例中为(4-2)个自由变量]
r个主变量表示只有r个方程起作用,剩下(n-r)个变量均可自由选取数值
最简行阶梯形R:1.可看出主行,主列;2.包含一个单位阵();3.还有一行0
(全为0的行表示原行是其他行的线性组合,所以实际上只有2行)
(除单位阵之外,还得到了自由列,特解很快便知)
求特解:Ax=0Ux=0Rx=0 <解不变>
由R可知, 且
令 主列:I 自由列:F
回代 r个主行,r个主列,(n-r)个自由列
构造零空间N(各列由特解组成) RN=0 零基
RN=0:主变量=-F*自由变量 principal variable:主变量
第八课 求解Ax=b 可解性和解的结构
Ax=b通过消元确认有解(唯一/很多,并求出所有的解)/无解
(以上一讲矩阵A为例)
要有,则须有;
若系数矩阵A各行线性组合得到0,则常数矩阵b也以相同的线性组合得到0
增广矩阵
若,则 有解
可解性:Ax=b有解时,1,当且仅当,即b需是A各列的线性组合
2,若A各行线性组合得到零行,则b中元素相同线性组合须是0
(因为只有2个参数,所以零空间是中的二维平面,但不过原点,不是二维子空间。它表示可任意选取的自由无关数字的个数。)
求解Ax=b所有的解,即通解:
特解(最后一行均为0):设所有的自由变量,
求出主变量(唯一)
得 代入原方程检验
基础解系/基(零空间内任意解,即):因为有两个自由变量,所以有两个特殊解
取一个自由变量=1,其余自由变量=0
通解 (其中,取任意值)
未完待续。。。