线性代数 2

第五课 转置 — 置换 — 向量空间R

一.向量空间

     向量运算相加数乘(数是标量)

     空间:很多向量.一整个空间的向量,但并不是任意向量的组合都能称为空间.

                必须满足一定规则,必须能够进行加法和数乘运算,必须能够进行线性组合。

     从例子开始(以下讨论均为实数):

      1.R^{2} (这里都是二维实向量)称为一个xy平面,但是这里需要考虑成所有向量组成的向量空间,如:

                                                               \begin{bmatrix} 3\\2 \end{bmatrix}   \begin{bmatrix} 0\\0 \end{bmatrix}   \begin{bmatrix} \pi \\e \end{bmatrix}     

         还可在xy平面中做出图像(通常有箭头),水平(竖直)表示第()分量,整个平面则是R^{2}

       \bigstar原点的重要性:对于向量空间,有了这个向量,就必须满足这个向量乘以任何数(包括0),或加上向量空间内的任何向量(包括其相反向量),其结果都必须在向量空间内,而原点显然也在结果之中,所以所有向量空间必须包含0向量(即原点)

          R^{3}(所有三维实向量组成的向量空间)  如:  \begin{bmatrix} 3\\ 2\\ 0 \end{bmatrix}  是三维向量,而不是二维向量,\because0也是一个分量

         R^{n}向量空间,包含了所有的n维向量(以列的形式,即列向量),且它们的分量都是实数

       2.加法和数乘必须满足的8条运算规则,其关键是能否在运算完成后仍处于空间内

          “不能”的例子:只取R^{2}的第一象限(所有分量均非负)

                                  相加可以,但是数乘却不行:  -5\begin{bmatrix} 3\\ 2 \end{bmatrix}  其结果不在第一象限内

                                  \because对于实数的数乘来说,它不是封闭的,\therefore第一象限不构成向量空间

          \therefore向量空间必须对数乘和加法2种运算是封闭的or对线性组合封闭 

二.子空间(类比子集)

     1.R^{2}中的向量空间(即R^{2}的向量子空间)

        \bullet任意向量乘以任意的数,其结果均在一条直线上(不能对数乘封闭的,都不是向量空间)

          检验加法:直线上的向量+直线上其他向量=直线上某个向量

        \thereforeR^{2}的向量子空间可以是R^{2}内的一条直线,但并不是R^{2}内所有的直线都是子空间

           只有R^{2}穿过原点的直线才是R^{2}的子空间(论原点的重要性)

           \circ图 五-二-1 实线是R^{2}的一个向量子空间,而虚线上的向量数乘0将得到\begin{bmatrix} 0\\ 0 \end{bmatrix},不在虚线上,               所以虚线并不是R^{2}的一个向量子空间。

                                                                图 五-二-1

综上,a.列出R^{2}所有的子空间:1,R^{2}本身(R^{2}最大的子空间) 

                                                   2,穿过原点、两端无限延伸的直线

                                                     \bulletR^{1} 也都是直线,但两者并不相同(类似,但截然不同),R^{1}只                                                          有一个分量,而“2,”中的直线是R^{2}中的直线,都有两个量。

                                                   3,只包含零向量,通常用Z来表示零向量(\begin{bmatrix} 0\\ 0 \end{bmatrix}

                                                     \bullet一个零向量就能满足所有法则,它总是构成最小的子空间,                                                              而最大的子空间是空间本身

           b.列出R^{3}所有的子空间:1,R^{3}本身(最大的子空间)

                                                   2,穿过原点、两点无限延伸的直线

                                                   3,穿过原点平面

                                                        \bullet两个向量不共线,构成一个过原点的平面     \begin{bmatrix} 1\\ 2\\ 4 \end{bmatrix}   \begin{bmatrix} 3\\ 3\\ 1 \end{bmatrix}

                                                          两个向量共线,构成一条过原点的直线

                                                   4,单个零向量(单个矢量的空间)\begin{bmatrix} 0\\ 0\\0 \end{bmatrix}

     2.如何得到向量空间?           矩阵构造

        例.如何得到R^{3}

        核心思想:通过某些向量(属于R^{3})构成一个向量组的空间(属于R^{3})

         a.通过列向量构造 

          A\begin{bmatrix} 1 &3 \\ 2& 3\\ 4&1 \end{bmatrix}(在R^{3}中)通过一系列的线性组合(加法and数乘)所得到的向量构成一个子空间[即列              空间,记作C(A)]           

          \bullet构造矩阵列空间,只用取出矩阵的各列进行线性组合,后所有的线性组合结果构成列空间

第六课 用向量空间和列空间理解 Ax=b

R^{3}中的子空间:平面P,直线L(均过原点)

     1.P\cupL不是R^{3}的子空间,因为加法不封闭

     2.P\capL=0(L不在P上),所以R^{3}的子空间

        推广:任意子空间的交集(一般子空间S\capT)仍是R^{3}的一个子空间    

\bullet向量空间:一些向量对一些运算封闭(即向量空间必须满足两个条件:加法封闭和数乘封闭)

\bullet所有的线性组合即任意倍的向量v与任意倍的向量w之和,仍在空间中

\bullet所有子空间必须包含原点

一,列空间

     A=\begin{bmatrix} 1 &1 &2 \\ 2 & 1 & 3\\ 3& 1& 4\\ 4 & 1 & 5 \end{bmatrix}        (取了3个向量进行线性组合得不到整个R^{4})       

      1.Ax=b   

         a.并不是对任意的b都有解         

     \bigstarb.b需满足什么条件,方程组才有解

           (1).\becauseAx=b有4个方程却只有3个未知数

                \therefore方程组不总是有解(\because3个列向量的线性组合\neqR^{4}\therefore有大量的b不是3个列)

           (2).Ax=b有解,当且仅当b\epsilonA的列空间(即只有b是A中各列的线性组合时)

                列空间包含所有A数乘任意的x得到的向量

    \begin{bmatrix} 1 &1 &2 \\ 2 & 1 & 3\\ 3& 1& 4\\ 4 & 1 & 5 \end{bmatrix}\begin{bmatrix} x_{1}\\ x_{2} \\ x_{3} \end{bmatrix}=\begin{bmatrix} b\\ \end{bmatrix}

A中的c_{1}c_{2}为主列(R^{4}中的二维子空间)

[主列选取优先考虑靠前的线性无关向量,去掉c_{1}也可(相当于去掉c_{3}),这里去掉c_{3}是因为c_{3}没有贡献,c_{1}c_{2}能构筑同样的裂空间(c_{3}=c_{1}+c_{2},c_{3}c_{1}c_{2}的平面上,线性相关,没有贡献)]

二.零空间

\bullet零空间:一种完全不同的子空间,包含Ax=0所有的解,也必然包括0

\begin{bmatrix} 1 &1 &2 \\ 2 & 1 & 3\\ 3& 1& 4\\ 4 & 1 & 5 \end{bmatrix}\begin{bmatrix} x_{1}\\ x_{2} \\ x_{3} \end{bmatrix}=\begin{bmatrix} 0\\ 0\\0 \\ 0 \end{bmatrix}        零空间是R^{3}的子空间

A_{m*n}        \epsilon R^{3=n}      C(A)是R^{4=m}的子空间

对于m*n矩阵,因为列个数n=未知数,所以多少个x乘以这些列是R^{3}中的问题

(求列空间,零空间的一般方法——消元)

零空间N(A)是一条R^{3}中的直线,包括\begin{bmatrix} 0\\ 0\\0 \end{bmatrix},\begin{bmatrix} 1\\ 1 \\-1 \end{bmatrix},\begin{bmatrix} c\\ c\\ -c \end{bmatrix}...(c取任意数)  \rightarrow c\begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix}                                                                                                                            一整条直线(经过原点,两端延伸)

\bullet回到向量空间和子空间的定义,思考:

   怎么知道零空间是向量空间?为什么它能被称作“空间”?

   检验:Ax=0的解构成一个子空间

   需证明:对任意的一个解x和另一个解x^{*},它们之和仍然是解(这是空间的限制条件,即加法封闭) 

                  如果Av=0,且Aw=0,则A(v+w)=Av+Aw=0       (矩阵乘法规则:分配律)

                  v和w都在零空间内,它们的和v+w也在零空间内

                  同理可证:Av=0,则A(12v)=12Av=0                (数乘时数可以提到前面) 

\begin{bmatrix} 1 &1 &2 \\ 2 & 1 & 3\\ 3& 1& 4\\ 4 & 1 & 5 \end{bmatrix}\begin{bmatrix} x_{1}\\ x_{2} \\ x_{3} \end{bmatrix}=\begin{bmatrix} 1\\ 2\\3 \\ 4 \end{bmatrix}

\bullet4个方程却只有3个未知数,如果随便选取右侧向量b,很有可能无解

  不过这个例子中的b比较特殊(b是A中的c_{1},使得我们可以一眼看出解)

  x=\begin{bmatrix} 1\\ 0 \\ 0 \end{bmatrix},\begin{bmatrix} 0\\ -1\\1 \end{bmatrix}  一条不穿过原点的直线

                               这些解中不包含零向量,所以这些解不构成向量空间/子空间

\bigstar构造子空间的两种方法

    1.列空间:从向量出发,通过线性组合构筑向量空间/子空间

    2.零空间只已知向量必须满足的方程组,从一个方程组中通过让x满足特定条件去得到子空间

第七课 求解Ax=0—主变量—特解

A=\begin{bmatrix} 1 &2 & 2 & 2\\ 2& 4& 6&8 \\ 3& 6& 8&10 \end{bmatrix}

1.2c_{2}=c_{1},作为列向量,它们方向相同,c_{2}c_{1}的线性组合,即c_{2}相关于c_{1}   

r_{1}+r_{2}=r_{3},所以r_3也与r_1,r_2相关,这些在消元中都会表现出来

所以选择消元这种算法(对象是长方阵

所以主元为0时,不必理会,选取0的后一位为主元,继续消元

2.从一个方程减去另一个方程的倍数,方程组的解不会改变,所以在消元过程中,零空间不会改变

3.因为右侧常数向量为0,所以只用处理方程左侧

 A=\begin{bmatrix} 1 &2 & 2 & 2\\ 2& 4& 6&8 \\ 3& 6& 8&10 \end{bmatrix}  \sim \begin{bmatrix} 1 & 2&2 & 2\\ 0& 0& 2& 4\\ 0&0 & 2&4 \end{bmatrix}  \sim \begin{bmatrix} 1 & 2&2 & 2\\ 0& 0& 2& 4\\ 0&0 & 0&0 \end{bmatrix}=U   \xrightarrow[\frac{1}{2}r_{2}]{r_{1}-r_{2}}  \begin{bmatrix} 1 & 2&0 & -2\\ 0& 0& 1& 2\\ 0&0 & 0&0 \end{bmatrix}=R

          r_{1}c_{1}为主元一           r_{2}c_{3}为主元二       (行)阶梯形                                  最简行阶梯形

          主列(即主变量)为c_{1},c_{2}  (主元所在列)                                                        主元上下全为0

\bigstar矩阵的秩rank(等级,阶级),表示主元个数      本例中主元数量为2,所以矩阵A的秩为R(A)=2

    矩阵进行初等行变换、乘以满秩矩阵/可逆矩阵(可逆\Leftrightarrow满秩)、转置,秩都不变

Ax=0\toUx=0,但是解和零空间不变

本例中,只有2个主列/主变量(c_{1},c_{3}),其余的c_{2},c_{4}自由列(可自由/任意分配数值)

\because c_{2},c_{4}乘数任意,\therefore x_{2},x_{4}任取,\therefore只需求解x_{1},x_{3}(通过回代求解)

x=\begin{bmatrix} -2\\ 1\\ 0\\0 \end{bmatrix}解1x=c\begin{bmatrix} -2\\1 \\ 0 \\ 0 \end{bmatrix}+d\begin{bmatrix} 2\\ 0\\ -2\\ 1 \end{bmatrix}   零空间的一个向量,Ax=0的一个解,表示-2c_{1}+c_{2}=0  

\rightarrow x=c\begin{bmatrix} -2\\ 1\\ 0 \\ 0 \end{bmatrix}  R^{4}中一条无限延伸的直线,在零空间中,但不是整个零空间,因为自由变量有2个

x=\begin{bmatrix} 2\\ 0\\ -2\\ 1 \end{bmatrix}解2

解1,解2的线性组合就可求出整个零空间,即Ax=0的所有解

x=c\begin{bmatrix} -2\\1 \\ 0 \\ 0 \end{bmatrix}+d\begin{bmatrix} 2\\0 \\ -2 \\ 1 \end{bmatrix}  (c,d取任意数)  “+”表示任意线性组合 

解1,解2均为零空间上的一条线,线上都是方程组的解           

特解(特定的解)  两个特解的线性组合,每个自由变量对应一个特解

                          “特定”在于给自由变量分配的特定值,构造出整个零空间

                          有了特解,就有了其任意倍(都在零空间内)

                          零空间内所包含的正是特解的线性组合

\bigstarm*n矩阵,n个变量,其秩为r   

    如果有r个变量是主变量,则有(n-r)个自由变量              [本例中为(4-2)个自由变量]

    r个主变量表示只有r个方程起作用,剩下(n-r)个变量均可自由选取数值

\bullet最简行阶梯形R:1.可看出主行,主列;2.包含一个单位阵(c_{2}\leftrightarrow c_{3})\begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix};3.还有一行0

(全为0的行表示原行是其他行的线性组合,所以实际上只有2行)

(除单位阵之外,还得到了自由列,特解很快便知)

\bullet求特解:Ax=0\rightarrowUx=0\rightarrowRx=0   <解不变>

由R可知,x_{1}+2x_{2}-2x_{4}=0  且  x_{3}+3x_{4}=0

\binom{x_{2}}{x_{4}}=\binom{1}{0}   主列:I  \begin{bmatrix} 1 &0 \\0 &1 \\0 & 0 \end{bmatrix}    自由列:F  \begin{bmatrix} 2 &-2 \\0 & 2\\0 & 0 \end{bmatrix}     

回代  R=\begin{bmatrix} I_{r*r} &F \\ O& O \end{bmatrix}  r个主行,r个主列,(n-r)个自由列

构造零空间N(各列由特解组成)  RN=0      N=\begin{bmatrix} -F\\I \end{bmatrix}   零基   

RN=0:主变量=-F*自由变量    \begin{bmatrix} I &F \end{bmatrix}\begin{bmatrix} principal\,variable\\ free\, variable \end{bmatrix}=0     principal variable:主变量

第八课 求解Ax=b  可解性和解的结构

Ax=b通过消元确认有解(唯一/很多,并求出所有的解)/无解

(以上一讲矩阵A为例)     

要有r_{1}+r_{2}=r_{3},则须有b_{1}+b_{2}=b_{3}

若系数矩阵A各行线性组合得到0,则常数矩阵b也以相同的线性组合得到0

增广矩阵\begin{bmatrix} A &b \end{bmatrix}=\begin{bmatrix} 1 &2 & 2 &2 &b_{1} \\ 2 & 4 & 6 & 8 &b_{2} \\ 3 & 6& 8 & 10& b_{3} \end{bmatrix}\rightarrow \begin{bmatrix} 1 &2 & 2 &2 &b_{1} \\ 0 &0 &2 &4 & b_{2}-2b_{1}\\ 0 &0 &2 &4 &b_{3}-3b_{1} \end{bmatrix}

0=b_{3}-b_{2}-b_{1},则b=\begin{bmatrix} 1\\ 5 \\ 6 \end{bmatrix} 有解

可解性:Ax=b有解时,1,当且仅当b\in C\left ( A \right ),即b需是A各列的线性组合

                                     2,若A各行线性组合得到零行,则b中元素相同线性组合须是0

(因为只有2个参数,所以零空间是R^{4}中的二维平面,但不过原点,不是二维子空间。它表示可任意选取的自由无关数字的个数。) 

求解Ax=b所有的解,即通解

特解x_{p}(最后一行均为0):设所有的自由变量x_{2}=x_{4}=0

                                         求出主变量(唯一)x_{1}=-2   x_{3}=\frac{3}{2}

                                          得x_{p}=\begin{bmatrix} -2\\ 0\\ \frac{3}{2} \\0 \end{bmatrix}      代入原方程检验

基础解系/基(零空间内任意解x_{null\: space},即x_{n}):因为有两个自由变量,所以有两个特殊解

                                                                           取一个自由变量=1,其余自由变量=0

通解x=x_{p}+x_{n}=\begin{bmatrix} -2\\0 \\ \frac{3}{2} \\ 0 \end{bmatrix}+c_{1}\begin{bmatrix} -2\\1 \\ 0 \\ 0 \end{bmatrix}+c_{2}\begin{bmatrix} 2\\ 0\\ -2 \\ 1 \end{bmatrix}     (其中c_{1},c_{2}取任意值) 

          

     

          

       

未完待续。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值