线性代数——个人理解

麻省理工学院 - MIT - 线性代数(我愿称之为线性代数教程天花板)_哔哩哔哩_bilibili 

 MIT—线性代数笔记00 - 知乎 (zhihu.com)

一、线性方程组的几何图像 

二元情况

2x-y=0

-x+2y=3

Ax=b

该方程可以理解为两种图像:行图像和列图像

行图像

 

先找出符合方程的两个数组,确定xy平面上两点,连接两点确定代表方程的直线,两条直线的交点为方程组的解;

列图像

先将系数矩阵写成列向量的形式,求解原方程变成寻找列向量的线性组合构成向量b 

x\begin{bmatrix} 2\\-1 \end{bmatrix}+y\begin{bmatrix} -1\\2 \end{bmatrix}=\begin{bmatrix} 0\\ 3 \end{bmatrix}

由图可的x=1,y=2

任意取x,y,以上两个列向量的所有线性组合可以布满整个坐标平面

三元情况

Ax=b方程组是否有解?
 

 行图像理解

当方程所代表的三个平面相交于一点时方程有唯一解;三个平面中至少两个平行则方程无解;平面的两两交线互相平行方程也无解;三个平面交于一条直线则方程有无穷多解

列图像理解

列向量的线性组合是否覆盖整个三维空间?

对于n维情况,n个列向量如果相互独立——线性无关,则方程组有解;否则n个向量线性相关,无法充满n维空间,方程组未必有解

奇异矩阵/不可逆矩阵

三个列向量无论怎么组合也得不到平面外的向量b。此时矩阵A为奇异阵或称不可逆矩阵。

也可以理解为系数矩阵里列(行)向量不是相互独立的

在矩阵A不可逆条件下,不是所有的b都能令方程Ax=b有解。

二、矩阵消元

高斯消元法(Gauss elimination)就是通过对方程组中的某两个方程进行适当的数乘和加(jian)和(fa),以达到将某一未知数系数变为零,从而削减未知数个数的目的。

我们将矩阵左上角的1称之为“主元一”(the first pivot),第一步要通过消元将第一列中除了主元之外的数字均变化为0。操作方法就是用之后的每一行减去第一行的适当倍数,此例中第二行应减去第一行的3倍。之后应对第三行做类似操作,本例中三行第一列数字已经为0,故不用进行操作。

处在第二行第二列的主元二为2,因此用第三行减去第二行的两倍进行消元,得到第三个主元为5。

矩阵A为可逆矩阵,消元结束后得到上三角阵U(Uppertriangular matrix),其左侧下半部分的元素均为0,而主元1,2,5分列在U的对角线上。主元之积即行列式的值。

需要说明的是,主元不能为0,如果恰好消元至某行,0出现在了主元的位置上,应当通过与下方一行进行“行交换”使得非零数字出现在主元位置上。如果0出现在了主元位置上,并且下方没有对等位置为非0数字的行,则消元终止,并证明矩阵A为不可逆矩阵,且线性方程组没有唯一解

消元矩阵

 左行

矩阵左乘行向量则是对矩阵的行向量进行线性组合

 右列

系数矩阵乘以未知数向量,相当于对系数矩阵的列向量进行线性组合

置换矩阵

当应用消元法求解方程组的时候我们需要通过行交换将0从主元位置移走。左乘一个置换阵可以实现行交换的操作

左乘置换矩阵可以完成原矩阵的行变换,右乘置换矩阵则为列变换

置换矩阵P是通过对单位阵进行“行交换”得到的。对于nxn矩阵存在着n!个置换矩阵。置换矩阵具有特殊性质P^{-1}=P^{T}P^{T}P=I

 

 逆矩阵

如果矩阵A是方阵,若存在逆矩阵 A−1 ,使得A^{^{-1}}A=I=AA^{^{-1}}(左逆矩阵等于右逆矩阵)。我们称矩阵A可逆(invertible)或者矩阵A非奇异(nonsingular)。

反之,如果A为奇异(singular),则其没有逆矩阵。它的行列式为0。另一个等价的说法是,A为奇异阵,则方程Ax=0存在非零解x。例如:

\begin{bmatrix} 1 &3 \\2 & 6 \end{bmatrix}\begin{bmatrix} -3\\1 \end{bmatrix}=\begin{bmatrix} 0\\0 \end{bmatrix}

在这个二阶矩阵的例子中,两个列向量排列在同一方向上。不可逆矩阵中总有列向量对生成线性组合没有贡献,等价的说法还有:不可逆矩阵的列向量可以通过线性组合得到0。

 

换而言之,若矩阵A存在逆矩阵,则方程Ax=0只有零解。证明:反设其存在非零解x,则有

x=(A^{^{-1}}A)x=A^{^{-1}}Ax=A^{^{-1}}0=0,矛盾;

对于可逆矩阵,求它的逆矩阵是一个重要的问题。

 从“列操作”的角度来看,求逆矩阵过程其实和求Ax=b相同,只是这里x为矩阵A−1 的第j列,而b为单位阵的第j列。

消元矩阵之逆矩阵的实施效果就是抵消原矩阵的消元操作。消元矩阵实现了对原矩阵A的操作

三、矩阵的运算

标准方法(行*列)

矩阵乘法的标准计算方法是通过矩阵A第i行的行向量和矩阵第j列的列向量点积得到cij。

线性代数笔记3——向量2(点积) - 我是8位的 - 博客园 (cnblogs.com)

 

本质上矩阵的代数运算就是线性方程组的运算

 

阵乘法可以视为给线性方程组做变量替换

列操作

列操作是指矩阵C的第j列是通过矩阵A乘以矩阵B第j列的列向量得到的。这表明矩阵C的列向量是矩阵A列向量的线性组合

 行操作

行操作是指矩阵C的第i行是通过矩阵A的第i行乘以矩阵B得到的。这表明矩阵C的行向量是矩阵B行向量的线性组合。

高斯-若尔当消元法

求逆相当于两组方程:

 Gauss-Jordan消元法可以同时处理两个方程:

该过程可以理解为先对A进行一系列消元操作,相当于左乘消元矩阵E

E\begin{bmatrix} A &| I \end{bmatrix}=\begin{bmatrix} EA &| EI \end{bmatrix}=\begin{bmatrix} I & |A^{-1} \end{bmatrix}

由EA=I 可知E就是A的逆矩阵

相关计算规则(转置和逆)

 四、空间

 向量空间

我们可以对向量进行所谓“线性运算”,即通过加和(v+w)与数乘运算(3v)得到向量的线性组合。向量空间对线性运算封闭,即空间内向量进行线性运算得到的向量仍在空间之内

R2即为向量空间,它是具有两个实数分量的所有向量(二维实向量)的集合

向量 \begin{bmatrix} a\\b \end{bmatrix}的图像是从原点出发到点(a,b)的箭头,其中第一分量a为横轴坐标,第二分量b为纵轴坐标。空间R2的图像为整个x-y平面。

所有向量空间必然包含零向量,因为任何向量数乘0或者加上反向量都会得到零向量,而因为向量空间对线性运算封闭,所以零向量必属于向量空间。

R3是向量空间,它是具有三个实数分量的所有向量的集合。

Rn是向量空间,它是具有n个实数分量的所有向量的集合。

反例:R2中的第一象限则不是一个向量空间。

子空间

包含于向量空间之内的一个向量空间称为原向量空间的一个子空间。例如用实数c数乘R2空间中向量v所得到的向量集合就是R2空间的一个子空间,其图像为二维平面上穿过原点的一条直线,它对于线性运算封闭。

反例:R2中不穿过原点的直线就不是向量空间。子空间必须包含零向量,原因就是数乘0得到的零向量必须处于子空间中。

“子空间”为包含于向量空间内的一个向量空间。它是原向量空间的一个子集,而且本身也满足向量空间的要求。

R2的子空间包括:

  • R2空间本身
  • 过原点的一条直线(这是R2空间中的一条直线,与R1空间有区别)
  • 原点 仅包含0向量 Z

R3的子空间包括:

  • R3空间本身 3维
  • 过原点的一个平面 2维
  • 过原点的一条直线 1维
  • 原点 仅包含0向量 Z

列空间

矩阵A的列空间C(A)是其列向量的所有线性组合所构成的空间

求解Ax=b的问题,对于给定的矩阵A,对于任意的b都能得到解么?

如果 A=\begin{bmatrix} 1 &1 &2 \\2 & 1 & 2\\2 & 1 &4 \\ 4& 1 &5 \end{bmatrix}

显然并不是所有的b都能保证Ax=b有解,因为它有4个线性方程而只有3个未知数,矩阵A列向量的线性组合无法充满R4,因此如果b不能被表示为A列向量的线性组合时,方程是无解的。只有当b在矩阵A列空间C(A)里时,x才有解。

对于我们所给定的矩阵A,由于列向量不是线性无关的,第三个列向量为前两个列向量之和,所以尽管有3个列向量,但是只有2个对张成向量空间有贡献。矩阵A的列空间为R4(为什么R4,可以理解为列向量\begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix}是x,y,z,四维)内一个二维子空间。

 零空间

矩阵A的零空间N(A)是指满足Ax=0的所有解的集合。

对于所给定这个矩阵A\begin{bmatrix} 1 &1 &2 \\2 & 1 & 2\\2 & 1 &4 \\ 4& 1 &5 \end{bmatrix},其列向量含有4个分量,因此列空间是空间R4的子空间,x为含有3个分量的向量,故矩阵A的零空间是R3的子空间。对于mxn矩阵,列空间为Rm的子空间,零空间为Rn空间的子空间。

本例中矩阵A的零空间N(A)为包含 \begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix}的任何倍数的集合,因为很容易看到第一列向量(1)和第二列向量(1)相加减去第三列向量(-1)为零。此零空间为R3中的一条直线。

b值的影响

若方程变为\begin{bmatrix} 1 &1 &2 \\ 2& 1 &3 \\ 3& 1 &4 \\ 4& 1 &5 \end{bmatrix}\begin{bmatrix} x1\\ x2\\ x3 \end{bmatrix}=\begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix} ,则其解集不能构成一个子空间。零向量并不在这个集合内。解集是空间R3内过\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}\begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix}的一个平面,但是并不穿过原点 \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}

以上给出了关于矩阵的两种子空间,同时给出了两种构造子空间的方法。对于列空间,它是由列向量进行线性组合张成的空间;而零空间是从方程组出发,通过让x满足特定条件而得到的子空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小老大MUTA️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值